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Part 1: What are the drivers of
machine learning in healthcare?

Wellness and self-care personalisation: patient P
perspective )

- 8
Popu|0|’rion data-driven healthcare: po|icy perspective %

Precision drug discovery, development and

therapeutics: pharmaceutical industry perspective QQ
=

Data protection and connected care: provider and

regulator perspectives -



Part 2: Critical evaluation of data-
driven healthcare

Traditional statistical approaches to healthcare
- Principles of study design
- Types of study design

- Causal modelling

Current opp|ica’rions of ML in the healthcare domain



Machine Learning has the Potential to
Disrupt and Impact Healthcare




The Stakeholders in Healthcare
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The Person at the Centre of Healthcare
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j )> ML has the capacity fo transform
J= ) healthcare

Understanding physiological
changes over time

Forecasting of progression or
onset of disease

Personalising treatment
strategies



Population Data-driven Healthcare
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Population

What we as a society do collectively
to assure the conditions in which
peop|e can be heo|’rhy

Elucidates average effects ana
deviations from average effects

Policy recommendations

Health education

Outreach

Research for disease detection
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INjury prevention

uce healthcare inequo|i’ries



The Pharmaceutical Perspective:
Drug Discovery and Therapeutics




General Data Protection Regulation

Enhance protection of personal data

Significant impact for organisations and how they manage data
with some potentially very large penalties for violations - 4% of
global revenues

|mp0|c’rs the stforage, processing, access, ’rronsfer, and disclosure
of an individual’s data records

These protections apply to any organisation (anywhere in the
world) that processes the personal data of EU data subjects



Data Protection and Connected Care:
The Provider and Regulator Perspective

Medicines and Healthcare products
Regulatory Agency

0 EUROPEAN MEDICINES AGENCY
SCIEN MEDICINES HEALTI
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AN EVALUATION OF
DATA-DRIVEN HEALTH



The Beginnings of Data-Driven Health

“upon” “study” 4 'ﬂ 'Il‘ ﬂ H Wﬂ}
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epidemiology H i
verne HF M=

The study of the distribution and determinants of health related
states or events in specific populations & the applications of this
study to the control of health problems



The Beginnings of Data-Driven Health

DAGRAM ar rue CAUSES or MORTPALITY
APRIL 1855 to MARCH 1450 IN THE ARMY 1N THE EAST APRIL 154 ro MARCH 18585

Florence Nightingale (1820 - 1910)

Data visualisation: death
toll of the Crimean War

Army data:
16,000/18,000 deaths
not due to battle Wounds,
but to preven’rob|e
diseases, spread by poor
sanitation



The Beginnings of Data-Driven Health

mm Contextual phenomena:
| cholera incidence

WATER.
BOARD OF WORES
FOR THE LINEHOUSE DISTRICT,

Ecological design: compare
cholera rates by region

—_—_— —_—
The INMABITANTN of Distriet
which CHOLERA IN '&V‘ll'.\'z.“:

Cohort design: compare
cholera rates in exposed
and non-exposed
individuals




R.A. Fisher and the Principles of

Experimental Design
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I Why do these 2

plants differ in growth?
/r 2. Replication: repetition of

1. Randomisation: Unbiased
allocation of treatments to
different experimental plot

the treatment to more than
one experimental plot

3. Error control: Measure for
reducing the error of variance



Principles of Study Design é

Need to set up a study to answer a research question

Design most important aspect of a study and perhaps the most
neglected

The study design should match research question

So that we don't end up collecting useless data or the principle outcome ends up
not being recorded

No matter how good an algorithm is, if the study design is inadequate
(garbage in) for answering the research question, we'll get garbage out



Types of Study
Design

Non-Experimental Experimental

Observational Intervention
Studies Studies

Randomised

Descriptive Analytical Clinical Trial

Non-randomized/
mm Case Reports Case-control = Ficld/ Community
Trial

Case Series Cohort Study

Cross-Sectional or
Prevalence Study




Important Concept: Randomisation

Definition: The process by which allocation of subjects to
treatment groups is done by chance, without the Qbi|i’ry

to predic’r who is in what group

Aims:-

- To prevent statistical bias in allocating subjects to
treatment groups

- To achieve comparability between the groups

- To ensure samples representative of the general population



Methods of Randomisation

Simple Random Sampling Permuted Block Randomisation Stratified Random Sampling
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Sample Size and Power Calculations

\ No disease Disease
No disease
Do © X
Specificity Type | error
(False +) a.
Disease
Do X ©
Type Il error Power 1 - B;
(False -) B Sensitivity
Power o Sample size (n)

Effect size (4),Alpha(a)

Power is the probability
that a test of significance
will pick up on an effect
that is present

Increases with
SCImp|e size
effect size
type | error



The Challenge of Missing Data E’E

Kichd

Missing data is a common problem in healthcare data and can
oroduce biased parameter estimates

Reasons for missingness may be informative for estimating model
parameters

Bayesian models: coherent approach to incorporating
uncertainty by assigning prior distributions

Mason, Alexina, Nicky Best, Sylvia Richardson, and IAN PLEWIS. "Strategy for modelling non-random missing data
mechanisms in observational studies using Bayesian methods." Journal of Official Statistics (2010)



Missing Data E’E

Missing Completely At Random (MCAR) “‘.

The probability of data being missing does not depend on the observed or unobserved data
e.g. logit(p;) = 6,

Missing At Random (MAR)

The probability of data being missing does not depend on the unobserved data, conditional
on the observed data

e.g. Children with missing wheeze data have better lung function
e.g. logit(p;) = 85+ O;t; or logit(p;) = 0, + B,y

Missing Not At Random (MNAR)

The probability of data being missing does depend on the unobserved data, conditional on
the observed data.

e.g. Children with missing lung function have better lung function
e.g. logit(p;) = 04 + O5y;

Alexina Mason. "Bayesian methods for modelling non-random missing data mechanisms in longitudinal studies” PhD Thesis (2009)



M|ss|ng Completely At Random-

_____________________________________________________________________

. logit(p,) =0,
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logit(p,,) = 0, + 0,

Individual i

' Model of Interest
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Mlssmg Not At Random

B 0

logit(p;) = 05 + O5y;

Individual i

I\/Iodel of Interest

________________________________________________________________________



Causal Reasoning

The questions that motivate most studies in the health, social and
behavioral sciences are not associational but causal in nature.

Before an association is assessed for the possibility that it is causall,
other explanations such as chance, bias and confounding have to

be excluded

Require some |<now|eo|ge of the do’ra—genero’ring process - cannot
be computed from the data alone, nor from distributions governing
data

Aim: to infer dynamics of beliefs under changing conditions, for
example, changes induced by treatments or external interventions.

Pearl, Judea. "Causal inference in statistics: An overview." Statistics surveys 3 (2009): 96-146.



Prognostic Biomarker (Risk Factor)

A biological measurement made before treatment to
indicate long-term outcome for patients either untreated
or receiving standard outcome

Random Allocation
(Treatment) Outcomes

Prognostic biomarker
(risk factor)

Dunn, Graham, Richard Emsley, Hanhua Liu, and Sabine Landau. "Integrating biomarker information within trials to evaluate
treatment mechanisms and efficacy for personalised medicine." Clinical Trials 10, no. 5 (2013): 709-719.



Predictive Biomarker (Moderator)

A variable that changes the impact of treatment on the
outcome. A biological measurement made before
treatment to identify patients likely or unlikely to benefit
from o porﬂcu|or treatment

Random Allocation
(Treatment) Outcomes

Predictive biomarker

(Moderator)




Mediator

A mechanism by which one variable affects another
variable. Omitted common causes (hidden confounding)
should always be considered as a possible explanation for

associations that might be interpreted as ca%
Mediator \
!

Outcomes




Efficacy and mechanism evaluation:
Causal framework for investigating G

who medications work for /

Mediator
/V

Predictive biomarker
(moderator)

_y

—y
—_—y
—y
~~

Outcomes

Random Allocation

Prognostic biomarker
(risk factor)

-
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Example: Personalisation of Cancer

Treatment /a
\ ‘,

Tumor Size
/V’

Genetic Marker

—y
—_—
—
~~

> Outcome
Treatment (Survival)

Prognostic biomarker
(risk factor)




Bradford-Hill Principles of Causality

Plausibility Consistency

Cause associated with disease in

D ti k
oes causation mdke sense different population and studies

Strength Specificity

Cause strongly associated with disease Does the cause lead to a specific effect

Temporality

Cause precedes disease

Dose-Response

Greater exposure to cause,
higher the risk of disease




Machine Learning for Healthcare in
Context

Health data complexity requires adequately complex
methodologies and algorithms

Methods don't scale, need more advanced techniques and
thinking about other techniques developed outside the traditional

stats community

NQQCI ]COF sc0|e Ciﬂd speeol



CURRENT WORK IN ML IN THE HEALTHCARE
DOMAIN



Sparsity in Health Data

Maijor challenge for truly generalizable and scalable Al in healthcare is
maximizing information ufility for public health impact when that information

(observational or clinical-context data) is sparse
Missing data
Inadequately sampled data
Data that does not represent the diversity of a population

Generalisability: Training datasets that are representative of the diversity of the
oopulation as well as the heterogeneity of health conditions.

Transfer learning: potential to
Maximise utility of available data
Improve model’s ability to generalise



Transfer Learning for Data Sparsity

Good quality healthcare data is expensive and very often sparse
Aim: Maximizing information by using multiple data sources

Challenge: Feature mismatch: features in different datasets may
vary

Challenge: Distribution Mismatch: differing patient populations
across different hospitals

GAN architectures to efficiently enlarge the dataset
Better predictive models than if we simply used the target dataset

Jinsung Yoon, James Jordon and Mihaela van der Schaar.
"Radial GAN: Leveraging multiple datasets to improve target-specific predictive models using Generative Adversarial Networks.” arXiv preprint arXiv:1802.06403 (2018).



RadialGAN Transfer Learning for Data
Sparsity

D,
Z:. |_atent space
: X0 x Y- ith domain

Fi 6y G, F, D.: Decoders, Encoders

and Discriminator of the it
"/ domain
/E NS

The i domain is translated to
the j" domain via Z using F.

and G

Jinsung Yoon, James Jordon and Mihaela van der Schaar.
"Radial GAN: Leveraging multiple datasets to improve target-specific predictive models using Generative Adversarial Networks.” arXiv preprint arXiv:1802.06403 (2018).



npj | Digital Medicine

ARTICLE OPEN

www.nature.com/npjdigitalmed

The effectiveness of public health advertisements to promote
health: a randomized-controlled trial on 794,000 participants

Elad Yom-Tov', Jinia Shembekar’, Sarah Barclay® and Peter Muennig®

As public health advertisements move online, it becomes possible to run inexpensive randomized-controlled trials (RCTs) thereof.
Here we report the results of an online RCT to improve food choices and integrate exercise into daily activities of internet users.
People searching for pre-specified terms were randomized to receive one of several professionally developed campaign
advertisements or the “status quo” (ads that would otherwise have been served). For 1-month pre-intervention and post-
intervention, their searches for health-promoting goods or services were recorded. Our results show that 48% of people who were
exposed to the ads made future searches for weight loss information, compared with 32% of those in the control group—a 50%
increase. The advertisements varied in efficacy. However, the effectiveness of the advertisements may be greatly improved by
targeting individuals based on their lifestyle preferences and/or sociodemographic characteristics, which together explain 49% of
the variation in response to the ads. These results demonstrate that online advertisements hold promise as a mechanism for
changing population health behaviors. They also provide researchers powerful ways to measure and improve the effectiveness of
online public health interventions. Finally, we show that corporations that use these sophisticated tools to promote unhealthy
products can potentially be outbid and outmaneuvered.

npj Digital Medicine (2018)1:24 ; doi:10.1038/541746-018-0031-7

INTRODUCTION

Hundreds of millions of dollars are spent on traditional public
health advertisements annually."” In theory, public health
advertising can save money and lives by encouraging behaviors
that prevent disease before it happens.” While the objective of
advertising investments (e.g., encouraging people to quit smok-
ing) differs from those of private advertisers (encouraging people
to purchase a good or service), the central idea is the same: to
change behaviors.

Before online advertising, it was only possible to empirically test
public health campaigns by randomizing small numbers of
participants and to examine a few outcome measures.'? This
makes it difficult to test to whom different forms of advertisement
are best targeted.”™®

Humans vary greatly with respect to both their biology and
their beliefs. Medical researchers use predictive analytics to mine
databases of genetic information in order to target treatments to
individuals who are more likely to respond to them. Similarty,
private advertisers use predictive analytics to mine multiple
sources of sociodemographic and behavioral data to better target
individual consumers with the goal of changing their behavior.
However, precision public health interventions have largely sat on
the sidelines both due to the large sums of money required for
targeted advertising and due to ethical concerns.

Ethical concerns arise for a number of reasons. First, participant
data are collected without informed consent.” Second, many in
public health feel uncomfortable with the idea of manipulating
individual behaviors, preferring instead to work with anonymous
means to attempt to change behavior more generically.’®"" Such

concerns have largely pre-empted the use of precision public
health advertising, leaving only private firms to employ these
tools.

In the private sector, Google, Microsoft, Facebook, and other
intemet-based companies provide online services for free in
exchange for the information that drives precision advertising
using "big data analytics”. Online ads targeted using data analytics
can influence emotions and behaviors,'®'%'*

First, advertisers can make educated guesses or small-scale tests
about who might respond most to a given advertisement based
on common search terms by topic. Then, advertisement can be
randomized to be shown to users of search engines that search for
such terms. Randomization provides a “gold standard” test of
efficacy. Randomization can also provide causal information on
how different sub-groups (e.g, young women) respond to an
advertisement relative to others. Information on the experimental
responses of different "architypes” of individuals can then re-
tested with newer, more effective advertisements. This incre-
mental approach—targeting, refining, and testing—has the power
to produce online ads that affect beliefs and behaviors.

Big data companies—such as Facebook, Google, and Microsoft
—conduct tens of thousands of randomized-controlled trials
(RCTs) on their users every year.'® These results are invariably kept
inside these companies, but the general process for evaluating
advertisement efficacy is likely similar across companies.

Search advertisements are typically presented as textual
advertisements that appear on a search results page coupled
with a click through link to the advertiser's site. More advanced
versions include images in addition to (or instead of) the text.
While it is rare that users click on ads, online advertisements have

"Microsoft Research lsrael, 13 Shenkar st, 46875 Herzeliya, lsrael; *). Walter Thompson, 466 Lexington Avenue, New York, NY 10017, USA and *Global Research Analytics for
Population Health and the Department of Health Policy and Management, Mailman School of Public Health, Columbia University, 722 West 168th St, New York, NY 10032, USA

Correspondence: Elad Yom-Tov (eladyt@microsoft.com)

Received: 28 February 2018 Revised: 30 March 2018 Accepted: 9 April 2018

Published online: 27 June 2018

Published in partnership with the Scripps Translational Science Institute
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Explored the impact of ads on
changing health behaviours as
measured by future health
oromotion searches



Learning Structure from Real-World

EHRSs

Per-note latent topic features are aggregated

in extending 12 hour windows and used to form

matrix q" where is the overall proportion of

topic k in time-window m
Structured
Features

Clinical baseline features are extracted
from the database for every patient and

derived features are computed to form the
n-structured
Moles

n-12? -1

Al .y s

Structured Features matrix v
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LDA Model
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A linear kernel SVM is trained to create classification
boundaries forthree clinical outcomes: in-hospital
mortality, 30 day post-discharge mortality, and 1 year

post-discharge mortality
Apgregaled

Structured
Feature Matrix SV
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Depending on the model and time window being
evo|uo+eo|, subsets of the feature matrix v and matrix q'
are combined into an Aggregated Feature Matrix

Each patient’s de-identified clinical notes are used
as the observed data in an LDA topic model and
a total of 50 topics are inferred to create the per-

note topic proportion matrix g

Ghassemi, M., Naumann, T., Doshi-Velez, F., Brimmer, N., Joshi, R., Rumshisky, A. and Szolovits, P, 2014, August. Unfolding physiological state: Mortality modelling in
intensive care units. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 75-84). ACM.



CONTEXTUAL EVALUATION OF PROBLEM-LED
MODELLING FRAMEWORKS



Think deeply about the clinical context. C N T E x T

Find solutions which are specific to the
oroblem.

MATTERS

Good science is about merging
different schools of thought for
developing the bigger picture.

Data driven approach + Domain Knowledge =
Problem-led approach with the patient at the centre

Problem-led vs Data-driven Health

Danielle Belgrave, John Henderson, Angela Simpson, lain Buchan, Christopher Bishop, and Adnan Custovic.
"Disaggregating asthma: Big investigation versus big data." Journal of Allergy and Clinical Immunology 139, no. 2 (2017): 400-407..



From Information to Knowledge

1. Team Science: Discoveries about healthcare, not hypothesised a priori, have been

made by experts explaining structure learned from data by algorithms tuned by
those experts

2. Heuristic blend of biostatistics and machine-learning for principled problem-led
healthcare research

3. An ML approach to extracting knowledge from information in healthcare requires
persistent integration of
Data

Methods
Expertise




Problem-Led Patient-Centred Research
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ML STRATEGIES FOR HEALTHCARE
PERSONALISATION

Konstantina Palla

= Microsoft



WHAT IS PERSONALISED HEALTHCARE

* Traditionally -> personalised medicine

‘use of individual's genetic profile to guide decisions made in regard to the
prevention, diagnosis, and treatment of disease.”

[National Human Genome Research Institute]




BUT GENOMICS IS NOT ENOUGH

Factors of disease heterogeneity:

Patient
® 0 00
@ Tm Genomics
Behaviour
= coee 0006 Prior exposures
Comorbidities
mr M =

We need to be able to capture
this variability = individualised
support provision



WHAT IS PERSONALISED HEALTHCARE

Person in the centre. Person as unique individual.

Electronic
Health

Records

(EHR)

Lifestyle /

/ GeﬂOmlcs

Behaviour

Environment

Provision of Prognosis, Diagnosis, Treatment tailored to the individual



PERSONALISED HEALTHCARE — HOW CAN ML HELP?

ML can transform data into actionable information

120-
110-

Blood
Heart Rate o
pressure 2 9
[ 80_
. 70-
Insulin -

I [ [ I I [ [ I
0 2 40 60 80 100 120 140
Leg time
amputation

Diag

Diabetes

Medical Features
Proc Med Lab

. How can we extract

|t t, t t, ] useful knowledge?

|
EHR Medical History

Inspired by [Lee et al., 2017]



PERSONALISED HEALTHGARE — HOW CAN ML HELP?

mess

Data

—

&

ML

algorithms

| earn from the
population

Tailor to the
individual

Personalized
Healthcare

Prognosis,

N

Treatment..

Diagnosis,

|s this therapy
going to work for
me”?



ML FOR HEALTHCARE PERSONALISATION

How to structure the talk?

* Explain the most popular techniques ﬁ
One click away

e Categorize
Type of data ‘ ‘ ‘ |

Supervised-unsupervised techniques
Task
Diagnosis, prognosis, classification etc.

Other ...



ML FOR HEALTHCARE PERSONALISATION

How to structure the talk?

Let the problem guide us.

: The choice of works presented in this tutorial
is by no means an indication of preference or superiority
of the method.



ML FOR HEALTHCARE PERSONALISATION

" Need to understand the patient condition, its dynamics and provide
optimal patient treatment.”

understand the patient condlition



ML FOR HEALTHCARE PERSONALISATION

understand the patient condlition

Model - free

approaches



MODEL-FREE APPROACHES Choice:

A As a first step towards

understanding
No (or few) assumptions - > they don't explain how 3 Familiarity of the user

Adapt to the intrinsic data characteristics

the data was generated. with the algorithm
d Availability of the

Decision Trees K-means Neural Networks corresponding
software
implementation

Random Forests Nearest Neighbour Support Vector Machines p

Ensemble Methods Hierarchical Clustering Regression



MODEL-FREE APPROACHES - EXAMPLE

Clustering Neural Network

L
&

+ They force the pattern to be captured Patient
- They don't explain was the data was generated Vector of
- Focus on the data, not on the process symptoms

Has the

disease or
not

13



MODEL-FREE APPROAGH — APPLICATION ON ASD

Autism Spectrum disorders (ASDs): a developmental disorder that affects
communication CmCJ behClViOUl’- Social communication difficulties

Restricted interests

Repetitive behaviours

Spectrum: Wide variation in the type and severity of symptoms
(heterogeneity)

* Motivation: Classifying patients into similar groups would provide a
oowerful tool to individualise treatment regimes

Work by [Doshi et al., 2014]



MODEL-FREE APPROAGH — APPLICATION ON ASD

e ASD and Comorbidities Gastrotestinal disorders
Epilepsy
/ Sleep disorders
Muscular dystrophy

A disease or a syndrome that co-occurs with the

target disease Psychiatric illnesses

Investigate the patterns of co-occurrence of

medical comorbidities in ASD:s.
Work by [Doshi et al., 2014]



MODEL-FREE APPROAGH — APPLICATION ON ASD

Patients: ~ 5K Children

Data: Comorbidity counts over period O-15year split in 6month window
and for 45 comorbidities.

Method: Unsupervised clustering

D =1350

\
( \

e b A Ay Al Bl Bl AV A A ]

Patient vector [ _, ..., —| |- .

\ )
|

45 comorbidities

Work by [Doshi et al., 2014]



MODEL-FREE APPROAGH — APPLICATION ON ASD

Results:

Three distinct subgroups were identified

P |
L

Work by [Doshi et al., 2014]

t

m seizures
I

Psychiatric
disorders

Better understanding of
co-occurrence of

comorbidities in ASDs

A first step for uncovering
underlying etiologies

Similar work on Diabetes type 2 by
[Ahlqvist et al, 2018]



ML FOR HEALTHCARE PERSONALISATION

understand the patient condlition

Model - based

approaches

+ probabilistic
framework



MODEL-BASED APPROACH

What is a model?

Definition [Bishop et al., 2015]

"A set of assumptions about a problem domain expressed in a precise
mathematical form, that is used to create a ML solution

A set of assumptions (defined by the user) to describe how the observed data is
generafec/.

19



MODEL-BASED APPROACH

A set of assumptions (defined by the user) to describe how the observed data is generofed.

Assumptions

Graphical model

our believes of how the data
Model:

is generated set of vars
\'%
(latent mechanism X dependencies

responsible for the obsv)
Tailored to the data

One of possibly many
Observed data

(clinical findings)

20



MODEL BASED APPROACH - UNGERTAINTY

Uncertainty in many forms

Probability

Mode Jrheory TO

eXpress CI” forms

Value of latent parameters of uncertainty

Observations (noise)

21



MODEL BASED APPROACH - UNGERTAINTY

Probability distributions to represent all the uncertain unobserved /770

quantities

Prior belief  p(x) @

and how they
relate to the
data

p(y[x) @

yo)
/-06
06/./

Generative

process X ~ p(X)
y ~p(y|x)

22



MODEL BASED APPROACH - LEARNING

Learning: infer the value of the unknown quantities.

Posterior: Our updated belief after having seen the data

Bayes Rule

p(x|Y) =

p(Y[x)p(x)

p(Y)

p(x|Y)o<p(Y|x)p(x)

Posterio

Priot—p.

Likelihood

>

23



MODEL BASED APPROACH - EXAMPLE

* Motivation: >R
He’rer%?enei’ry in complex diseases (chronic). 25
Scleroderma 5l

Trajectory of lung 15 W‘
e Target: / severity over time
Predict future disease trajectory \\ )"’Q

".l)r'
0.5 \"‘ nl

\‘: ‘;\‘n 2 ‘ﬁ&';.,*-';
_ \H,:\“é;lflﬁw,_ “;":.
A *‘“‘\V S Vel Aﬁd"

* Challenge: 0
Individualize prediction by capturing variability

0.5
W«v Z NG AV AN
1 \‘m&\ A!' %4
0 1 2 4

Work by [Schulam et al., 2015]



MODEL BASED APPROACH — INDIVIDUALISED DISEASE
PROGRESSION MODEL

* Assumptions: 4 factors of variability
disease subtype
* Model:

population

subpopulation

Multi-level model (Latent variable model) -
organise variability in different levels

e.g. chronic smoking

individual
| Ve Az & (1.7 G &t T . 0 Transient trends
Yij =~ j)(’fj) Tip + E("ij) Pz T E'[:*z'_j} )i + f!l(’fj) , T
- -~ - L. - - L -~ - iy, — 51_ .
ructured noise
(A) population (B) subpopulation (C) individual (D) structured noise

[Schulam et al., 2015]



MODEL BASED APPROACH — INDIVIDUALISED DISEASE
PROGRESSION MODEL S
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MODEL-FREE VS MODEL-BASED APPROACH

Model-free Model-based

»Learn pattern in the data - no » Model assumptions
assumptions

» Allow for human-led exploration.
» Give insight - can be used as first step

» Perfect fit for probabilistic framework -
»Easy to use - off the shelve uncertainty

»Hard to match the requirements of a » Try many different models to find the
new application. best

27



ML STRATEGIES FOR HEALTHCARE PERSONALISATION

ML for personahsed treatment



ML FOR PERSONALISED TREATMENT

What treatment should | give to patient?

aln

|o|eo||y, we want to be confident answering this.

Rephrase:
We are interested in the causal influence of treatment A and B

on the patient.




ML FOR PERSONALISED TREATMENT

BUT:
Randomized Control Trials "Gold standard”

* |mpractical
* Expensive (recruiting

is hard!)

Control & Manipulation

e Take time

A
- e Unethical
* Does inhaling
Evaluate average stesfos cause
treatment effect 3
cancer

)ﬁ« * Not personalised - only
iﬁ‘ oopulation effect



ML FOR PERSONALISED TREATMENT

[ Absent controlled experiment, Observational data are used]

Cheaper, Faster, in Plethora

Limitations
* Human population high heterogenous

* Doesn't contain all possible outcomes for all treatments for a patient

* Data might be biased - unknown underlying data collection protocol

How can ML be applied on Observational data
to facilitate personalised treatment?
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ML FOR PERSONALISED TREATMENT

Pneumonia example [Caruana et al., 2015]

Machine Learning to guide the treatment of pneumonia patients

What the model inferred: Asthmatic patients have less risk of death!

Aggressive
tregtment Confounder

N

Asthma >  Risk
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ML FOR PERSONALISED TREATMENT - COUNTERFACTUALS

Problem: Evaluate individual Treatment effects using observational data

y @ y®

Assume: outcome after the patient i is given treatment {A, B}.

Challenge:

* Evaluate Treatment effect for a patient Yi(A) — Yi(B) using observational

data - What if?”
* BUT: For every subject we only observe one outcome FACTUAL

Never observe the counterfactual. .
Observed patient

What would the response to
i treatment A
outcome be if the

patient was given
treatment B?



ML FOR PERSONALISED TREATMENT - COUNTERFACTUALS

Outcome |dea: Compute distribution over
% o counterfactuals.
.. o® O o © O How: Multi-task learning problem
@ ® PN
‘e e ° (4)
o O ¥ Multi-task | = > Y
> l model | - > Y(B)
Feature X; L
A B
Factuals, Y( ), Y( ) ~ GP(O, K)
A l l

Multi-task Gaussian Process
[Alaa et al, 2017]

34



ML FOR PERSONALISED TREATMENT - COUNTERFACTUALS

[Alaa et al, 2017]

The Bayesian framework provides estimates of the Individualised
Treatment Effect through the posterior counterfactual distribution

OU‘I’Come @® Factual treated A O Factual treated B

O Counterfactual Counterfactual

! ] l II i | oo oo

Other works in
Counterfactual reasoning:

Feature X;
[Johansson et al., 2016]
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ML STRATEGIES FOR HEALTHCARE PERSONALISATION

ML for mHealth



MOBILE HEALTH AND PERSONALISED INTERVENTIONS

Machine Learning
Improve health T

Accelerometer Actionable personqhsed
GPS : .
information
Gyroscope

Magnetometer (intervene)

Microphone

37



MOBILE HEALTH AND PERSONALISED INTERVENTIONS

GPS

* Intervention app - Fundamental pattern that repe( accelerometer

|. at a given time point do / Agenda
Weather etc.

2. mobile phone collects data (’rhe context)

3. a decision rule (or policy) maps the data into an intervention option (the
action)

4. bile phone records the outcome (interpreted as a reward, so higher
is bett Intervention options: Miotes of activit
5 done Text messages for walking nutes or activity

Going to the gym

Summary of past workouts etc.




MOBILE HEALTH AND PERSONALISED INTERVENTIONS

a decision rule (or po|icy) maps the context into an intervention option (the

action)

Reinforcement learning framework + contextual bandits

Exploration - Exploitation

Personalised action
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MOBILE HEALTH AND PERSONALISED INTERVENTIONS

[Con’rex’r I:l ) @J




MOBILE HEALTH AND PERSONALISED INTERVENTIONS

Encouraging physical activity of diabetes
patients [Hochberg et al., 2016]

An intervention app to encourage physical activity

Approach: Encourage physical activity through personalised messages

Method: RL with contextual bandits



MOBILE HEALTH AND PERSONALISED INTERVENTIONS

Negative feedback

Positive feedback relative to self

Positive feedback relative to others

Slide by Elad Yom -Tov

You need to exercise to reach
your activity goals. Please
remember to exercise
tomorrow.

You have performed X%
weekly goal. Your exercise
level is in accordance with
your plan. Keep up the good

work.

You have performed X%
weekly goal. You are exercising
more than the average person
in your group. Keep up the
good work.




MOBILE HEALTH AND PERSUNALISED INTERVENTIONS

— g,
’— ‘\

minutes of activity in the last doy

Cumulative number of minutes of activity this week ' - ‘
Fraction of activity goal
User vector X
Age ~ L
Gender - N
_______ Augment with action vector A
Allows information from past (historical) |
Predict respective rewards Y of [X, Al

- ‘ 4

Each person modelled through several aspects { EXplOIf CII"]CI explOre - Cl’]OOSQ message}
Personalised messages (CICtIOﬂ)

[ Send message }




MOBILE HEALTH AND PERSONALISED INTERVENTIONS

97 patients were recruited for a period of 6 months each, 1/3 served as
controls

2.5

N

Fraction of expected activity

0 50 100 150 200 250
Day in experiment
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MOBILE HEALTH AND PERSONALISED INTERVENTIONS

Questions to consider:

When to send the interventions?

» Just-In-Time-Adaptive-Interventions (JITAls) More than ML
[|n|:>q| et CII., 20]6] science

Need to understand the user
» Psychologists, Behavioural scientists, HCl| experts.
Need synergy of sciences



HEALTHCARE PERSONALISATION AS A THREE LEVEL PROCESS

Interconnected parts Increased awareness at every level

.
A
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LIFECYCLE OF INTELLIGENGE

system
e 4 Gather
knowledge

Gather
data

=

Refinements to
data, model or
inference

Queries Inference

Debug &

diagnose

Metrics —>E SVE1[TEY 4] 3]
[Bishop et al, 2015]

Done!
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MODEL BASED APPROACH — INDIVIDUALISED DISEASE
PROGRESSION MODEL




MODEL BASED APPROACH - LEARNING

Model + Inference = Machine Learning algorithm

—

— Computational process of learning

Flexibility

e Different inference algorithms can be run on the same model

Consistency

* You can create one model and query it in different ways

Maintainability

« If you want to refine the assumptions encoded in the model, the clean

separation makes it straightforward to update it.
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Developing the unified framework
m Encoding the expert knowledge
m Equipping the machinery with causal reasoning
m Learning algorithms for complex structures

2

L. Azizi ( University of Sydney ) Future challenges 10/07/2018 2/34



Unified framework : Pillars

" Health Knowledge __

v

discovery -

Causal reasoning and

—j'?
v

Efficient Learning

algorithms H ’

v

Integrative system

L. Azizi ( University of Sydney )

Future challenges

10/07/2018

3/34

3
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Health knowledge

Saria, 2014

m - .
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> !.W.WW
: Administrative : L R LY T
Genamic claims £ u Exporramea b s
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Progress notes . \ de«ﬂ
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e
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Health knowledge

| Data Challenges | ’ Technical Challenges |
s N )
+ Integrating multi-sources high dimensional « Approaches to integrate heterogeneous
data data
= Unstructured observational data sources + Flexible and rich way of modelling

* Missingness In data sources + Approaches to incorporate Mechanisms

- o w,

| Current approaches are not enough |

L. Azizi ( University of Sydney ) Future challenges 10/07/2018 6/34



Health knowledge : Integration

m Graphical model : Natural to encode domain specific relationships

Graphical Models

Can we “even” integrate the various sources of knowledge ?!

» Lack of attention can lead to erroneous behavior

7
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Health knowledge : Integration

m Sources are more trusted

[ o
L g o S o
D, ~ D, “
O

M, M,

WM I-l‘_l:’

~J T..-'

than others
L. . Iy .
I m Source Misspecification =>
]i contaminate estimation and

update

Modular vs Full approaches combining various sources \

L. Azizi ( University of Sydney )

Future challenges 10/07/2018

8/34
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Health knowledge : Integration

m Integrating "omics” and clinical

Combining “omics” still in its infancy
EHR is uniquely positioned to aid when coupled with "omics” data

No platform for EHR standardisation and "omics” translation J

ittt
it 1R

"!'“HE!

Combining genotype-phenotype, social and environmental \

L. Azizi ( University of Sydney ) Future challenges 10/07/2018 9/34




Health knowledge : "Messiness” challenge

m Continuous temporal measurements, images or text

Ultrasound m

S

m Accurate for longitudinal data : inhomogeneous time series
m New memory models

m Not evenly spaced
m Cover long durations
m Early events affect patient many years later

10
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Health knowledge : "Missingness” challenge

m Received little attention in ML
m Sources of Missingness need to be understood
m Modelling the Missingness mechanisms

Ignoring Missingness = lead to incorrect results

Approaches accommodating various mechanisms for various sources \

L. Azizi ( University of Sydney ) Future challenges 10/07/2018 11/34



Causal reasoning and
discovery

L. Azizi ( University of Sydney ) Future challenges 10/07/2018 12/34



Causality reasoning

m Most ML techniques lack cause-effect reasoning
m Next-generation health data : observational

Reasoning about learning from data through the lens of "causal
models”

m Strong assumptions
m Encoding assumptions in a compact and usable form

» Not a trivial matter!

13
L. Azizi ( University of Sydney ) Future challenges 10/07/2018 13/34



Causal inference vs causal learning

Causal discovery
m Unsupervised learning of causal relationships
m Estimate the causal structure under assumptions

Discovery
Data + Assumptions )

observations

Variables

=) Challenging but promising

14
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Counterfactual reasoning

Level 3
s\:z;z ;':;:Z';g; 52217 &ounleﬂaema\s P(y_xIxy") J Imagining, retrospecting
Level 2
W;'l/headﬂchebecuudff [ Intervention P(yldo(x), 2) J ‘ Intervening, doing
aspirin taken?

Level 1

( Associat tion P(y|x) ] | Seeing

Symptom tells about
disease?

Pearl 2018

m "Learning Machines can not answer questions about interventions
non encountered”

m "Most do not provide a representation from which answers can be
derived”

15
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Counterfactual reasoning

m If system optimises property of the observed data :
m Back to association level s No answer to "what if”

m Complex objective functions are not an answer

Schulam et al, 2017

m Situation : Drug given to sicker patients
m Ouicome : Patients die
m Model : Predicts drug kills patient (even beneficial)

Bias in the treatment policy is not considered

Counterfactual predictions of outcomes if an experiment run

16
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Counterfactual reasoning

Schulam et al, 2017

m Potential outcomes framework : outcomes under different actions
m Equate to counterfactual models under hypothetical interventions

=t (@) : (b) § (©

2 : : : :

§ — N S TEm

) : P OEYNIH § EY(1]|%
‘o : 1m : i : :@,(l)

Years Siﬁce First Symptom

= Promising early results in ML for healthcare

17
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Efficient Learning
algorithms

L. Azizi ( University of Sydney ) Future challenges 10/07/2018 18/34



Learning algorithms

m Efficient Learning algorithms :

m Robust approximation
m Scalable algorithms
m Adaptive continually learning

= Less challenging for ML community !

\r/( )

C

i

L. Azizi ( University of Sydney ) Future challenges

10/07/2018
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& N
Integrative system

[Models for personalisation}

R
L b (4
O A L
ity o} N ()
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Rigourous Framework for trusting the model for deployment ?

m Interpretability
m Fairness
m Transparency, Testability and Validation

21
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Interpretability : What does it mean ?!

/ \\/ ' ysneeze Explainer | sneeze ] \V
weight (LIME)
</§\ headache -\ [eadaced] -
\ / no fatigue
age 7
Model Data and Prediction Explanation Human makes decision

m Causal inference models : Interpretable models
m Feature space minimisation

m Model regularisation
m Post-hoc analysis

= Interpretable models : More likely to be adopted by medical
practitioners

22
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Interpretability vs Justification ?!

: @
/ \ e Explainer |"sneeze | \V
- weight (LIME) )
\ ot » | |‘headache ] >
Ve no fatigue
age V4
Model Data and Prediction Explanation Human makes decision

m Explaining a prediction vs path to the prediction explained

Ghassemi et al, 2018 and Ribeiro et al, 2016

m Identifying data points most responsible for prediction
m May help with security concerns

A\ counter-intuitive to privacy concerns

=> "Justifiability” tools for the unified framework needed

23
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Fairness : What is it and why ?

m Data quality and model choice encode unintentional discrimination
m Learning from existing clinical practice can amplify the bias

= Systematic disparate

Need for systems that can alert to such unwanted behaviours )

Algorithmic fairness still in its infancy

Errors are distributed similarly across protected groups, as measured
by a cost function

24
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Fairness : What is it and why ?

Chen et al, 2018
m Fairness in prediction of an outcome Y

m Predictions are based on a :

Set of covariates X : medical history of a patient in a critical care
A Protected attribute A : self reported ethnicity

b 4 Samples Yy pY 1 X) y
1. [ O - SRR 1 1} R
2 1K) Low noise Y
5 ™ 7 .5 S ST i et T
High noise p(Y 1X)

x X
pXI1A=1) PXIA=0) pXlA=1) p(X1A=0)

» Which Fairness criteria and what cost

PX1A=0) pX14=1)
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Transparency, testability and validation

m Transparency : Whether assumptions are plausible or more
needed

m Testability : Whether assumptions are compatible with data

m Meaningful validation criteria : Moving beyond the current
performance measures

=) Novel criteria for validating models and assumptions

26
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From research to clinical implementation

27
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Learning deployment

m Training on large dataset and assume deployment

=> Stops learning once produced
m Patient populations, recommended treatment procedures change
= Statistical Target changes

=) Performance degradation

, Ghassemi et al 2018

m Robust to changes
m Continually update

B> Need to be considered early in systems design

28
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Generalisability

m No guarantee for a model learned on one hospital to generalise to
a new one

m Infrastructure varies across sites and health systems

m Data normalisation
m Data collection at different sites

= Generalisability not only a modelling challenge

L. Azizi ( University of Sydney ) Future challenges 10/07/2018 29/34



Clinician-Machine Interaction

Detecting individuals at risk early # treating them early )

m Systems that interact and collaborate with clinicians
m Leverage strengths of physicians and learning systems

m Having the patient and institutional preferences part of the
model ?!

Increase of trust and adoption in clinical decision support ]

=> Systems allowing for iterative feedback implemenation

30
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Beyond modelling and decision support

m Augmenting Data from RCTs with observational EHD

=> New therapies and practice guidelines

m Novel adaptive trial designs

= Reducing the cost of developing new therapies

m Learn who is most likely to benefit from available ressources

= Optimizing the allocation of limited ressources

,,,,,,,,
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Thank you'!
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