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MOTIVATION

Assume a Markov chain Xi,...,X;, ..., Xr, which is reversible:

PXi, ..., X ... Xr) =P(Xr, ..., X, ..., X))

Applications

e Modelling physical systems e.g transitions of a macromolecule conformation at
fixed temperature.

e Chemical dynamics of protein folding.

Tasks

e Find the transition operation (transition matrix) of the reversible Markov chain

e Put a prior on the reversible Markov chain

This work: proposes a Bayesian non-parametric prior for reversible Markov chains.
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REVERSIBLE MARKOV CHAINS

Problem: Put prior on reversible Markov chains. What does that mean?

Reversible chains and random walk on weighted graph
G(V, €, W) weighted undirected graph

o vertex-set V = {i,r,q,...} i

o edge-set & = {ei, €ig, €rg - - - }

e weight-set W = {Ji;, Jg, Jig, - - - }
Discrete-time random walk on G —

Markov chain with X; € V and transition
matrix

Jij
P(i,j) = =21—,
(i) S
Put a prior on the transition matrix P (or
on the weights Js).
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BASIC THEORY

Seminal work by Diaconis, Freedman and Coppersmith.

Markov Exchangeability

A process on a countable space S is Markov exchangeable if the probability of
observing a path Xi,...,X,, ..., Xr is only a function of X; and the transition counts
Cli,j) == |{X = i,Xip1 = j;1 <t < T}| foralli,j € S.

Representation Theorem (Diaconis and Freedman, 1980)

A process is Markov exchangeable and returns to every state visited infinitely often
(recurrent), if and only if it is a mixture of recurrent Markov chains

T—1
P(Xz,...,X,,...,XT|X1):/ [ PX0 X ) u(apix,)
P =1

where P is the set of stochastic matrices on S x S and the mixing measure ji(-|X)
on P is uniquely determined.

Problem: Determine the prior u. Not always easy.
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RELATED WORK

Random walk with reinforcement

e Idea: Simulate from the prior u.

e Increase the edge weight by +1 each time an edge

is crossed.
1 T—o0
? [J,'” Jrq7 Jiq] g [Lir, qu7 Liq} ~

T - total number of steps, x - measure over edge
weights, the underlying prior

e Process Markov exchangeable, recurrent —
mixture of recurrent MCs

Examples

e Edge Reinforcement Random Walk (ERRW) Diaconis and Freedman [1980],
Diaconis and Rolles [2006]; conjugate prior for the transition matrix for
reversible MCs.

e Edge reinforced schema by Bacallado et al. [2013] extends ERRW to countably
infinite space, reversible process, prior is difficult to characterise.
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RELATED WORK

Define a prior over reversible Markov chains:
1. Explicitly characterize the measure p over transition matrix

2. Define an Edge Reinforcement schema

Proposed work: Explicitly construct the prior p over the weights (or equivalently
the transition matrix)
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A MODEL FOR REVERSIBLE MARKOV CHAINS

General idea: Define the prior over the weights using the Gamma process
hierarchically.
Gamma process I'P(«H)
Completely random measure on X" with Lévy measure
v(dw,dx) = p(dw)H(dx) = apw™ e~ " dw H(dx).
on the space X’ X [0, 00). H is the base measure and « the concentration parameter.
Go =Y wiby, ~ I'P(aoH)
i=1

Countably infinite collection of pairs {X;, w; }{=, sampled from a Poisson process
with intensity v.
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A MODEL FOR REVERSIBLE MARKOV CHAINS

Define the prior over the weights using the Gamma process hierarchically.

Model

1. First level: I'P over space X’ N\ /@
Go =Y _ wiby ~ T'P(ao, o) \@)/
i=1

Set of states S := {x;;x; € X, i € N},
countably infinite.

2. Second level: I'P over space S x S.

> " Jidxx; ~ TP(a, p),

1 j=1

G=

'M8

i

Jijle, wi, w;j ~ Gamma(awiw;, o)

Base measure atomicon S X S:
w(xis x;) = Go(xi)Go(x;)
Non-reversible: Directed edges, Ji; # Jji
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A MODEL FOR REVERSIBLE MARKOV CHAINS

Reversibility

Impose symmetry

J;j = Jj,‘ ~ Gamma(awiw;, a)
Proof: Sufficient to prove detailed
balance

miP(i,j) = mP(j, i)

J;
where m; = Z,‘Ziklk]/k7 0<d, Ju <o0

Corollary: 7 is the invariant measure of
the chain.

We call the model the Symmetric Hierarchical Gamma Process (SHGP)
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A MODEL FOR REVERSIBLE MARKOV CHAINS

Properties

e Irreducibility
A MC is irreducible if 3r € Ns.t P; > 0, Vi,j € S

SHGP is irreducible: , Jy;, >, Ju € (0,00) = Pj = % >0asVi,jeS

e Recurrence A state i is positive recurrent if
E(1i) < 00, mij :=min{t > 1: X, = j|X; = i}
The SHGP is positive recurrent since the following applies:

Theorem (Levin et al. [2006])

An irreducible Markov chain is positive recurrent iff there exists a probability
distribution 7 such that m = wP.
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A MODEL FOR REVERSIBLE MARKOV CHAINS

Representation Theorem

A process is Markov exchangeable and returns to every state visited infinitely often
(recurrent), if and only if it is a mixture of recurrent Markov chains

T—1
P(Xz,...,X,,...,XT|X1):/ [ P X u(apix,)
P =1

where P is the set of stochastic matrices on S X S and p(-|X1) on P is the mixing
measure.

SHGP

e Explicitly defined prior p; hierarchical construction of weights
e SHGP is a mixture of recurrent, reversible Markov chains

e SHGP is recurrent, Markov exchangeable and reversible.
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THE SHGP HIDDEN MARKOV MODEL
@g
& TY
W ®» & ®

Finite number of states K. Countably

infinite model as K — oo. X; € {1,...,K} - hidden state sequence.
. E - emission matrix

Y;,t=1,...,T - observed sequence with

Go = ; Wi observation model F(-|E)

w; ~ Gamma(aopo(Xi), o) Y,|X,, E ~ld F(-|Ex,)
K K
G = Z ny5xi,.xj {Ex,k=1,--- K} state emission
Pri— parameters. F’; multinomial, Poisson and

Gaussian observation models
J,'j = in ~ Gamma(awiwj, Oc)
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EXPERIMENTS

We ran the SHGP Hidden Markov model on 2 real world datasets with reversible
underlying systems. Comparison against

e SHGP HMM non-reversible
e infinite HMM (HDP)
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CHIP-SEQ DATA FROM NEURAL STEM CELLS

e ChIP-seq allows us to measure what proteins, with what chemical
modifications, are bound to DNA along the genome.

e Ymatrix T x L, T =2 - 10" and L = 6: counts, how many reads for the protein
of interest | map to bin t.

e Poisson (multivariate) likelihood model F.

200 ;

H3K27ac
150 | = H3K27me3
= H3K4mel
= H3K4me3
——— 300

Pol2

read counts
.
o
o
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o
=)
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0 50 100 150 200 250 300
genomic location (100bp)

Figure: ChipSeq data for a small section of length 300 of the whole chromosome
region, along with the L = 6 identifiers (proteins of interest)
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CHIP-SEQ DATA FROM NEURAL STEM CELLS

Task: Predict held out values in Y.

Table: ChipSeq results for 10 runs using different hold out patterns (20%), a
truncation level of K = 30, 1000 iterations and a burnin of 700.

Model Alogirthm Train error Test error

Train log likelihood — Test log likelihood
Reversible HMC 0.9122 +0.0032 1.1158 £0.0097 —1.0488 +0.0009  —3.2422 + 0.0023
Non-rev 0.9127 +£0.0033  1.1167 £0.0095  —1.0494 £0.0009  —3.2478 £ 0.0022
iHMM Beam Sampler  0.9383 £ 0.0061  1.1365+0.0107  —1.0727 + 0.0041

—3.3047 £ 0.0027
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CHIP-SEQ DATA FROM NEURAL STEM CELLS

SHGP recovers known types of regulatory regions
® promoters.

® enhancers.

H3K27ac

H3K27me3
H3K4me1
H3K4me3

p300

Pol2

AN

= enhancers promoters
Figure: Learnt emission matrix L X K for ChIP-seq dataset. Element Ej is the
Poisson rate parameter for protein / in state k. Brighter indicates higher values
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SINGLE ION CHANNEL RECORDINGS DATASET

e Patch clamp recordings is a method for measuring conformational changes in
ion channels. These changes are accompanied by changes in electrical potential
(measurements).

e Y matrix 1 x T, T = 10*: 10KHz recording of electrical potential
measurements of a single alamethicin channel.

e Gaussian likelihood model F.
YT|XHE ~ N(Y!;Ma 0)7

where y = E(X;,1) and 0 = E(X;,2) with K X 2 emission matrix E.

Table: Ion channel results across 10 different random hold out patterns, a truncation
of K = 15, 1000 iterations and a burnin of 700.

Model Alogirthm Train error Test error Train log likelihood  Test log likelihood
Reversible HMC 0.023 £0.001  0.030 + 0.002 2.204 £ 0.055 2.034 £ 0.058
Non-reversible HMC 0.027 £0.007  0.033 £ 0.007 2.108 + 0.084 1.970 £0.078
iHMM Beam sampler  0.038 = 0.005  0.045 =+ 0.004 2.134 £ 0.070 2.008 + 0.058
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SINGLE ION CHANNEL RECORDINGS DATASET
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Figure: Clusters found by the SHGP-HMM for the ion channel dataset, shown
relative to a histogram of levels across the recording. The smaller clusters at higher
currents are often merged in the model.
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CONCLUSION AND FUTURE WORK

Constructed non-parametric prior for reversible Markov chains

Presented a finite approximation
e Experimental results using SHGP as part of HMM

e Experimental results underline the importance of accounting for reversibility

Future Work

e Construct sampler for the infinite case. Use of sampling process proposed by
Favaro and Teh [2013].

e Look at the corresponding edge reinforcement schema (?)
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Thank you!
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APPENDIX A

Gamma process I'P(«H)

Completely random measure on X with Lévy measure
v(dw,dx) = p(dw)H(dx) = aow™'e”“"dw H(dx).
on the space X’ X [0, 00). H is the base measure and « the concentration parameter.

Go:= Y wiby ~ I'P(aoH)

i=1

Countably infinite collection of pairs {X;, w; }{2, sampled from a Poisson process
with intensity v.
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APPENDIX B - RELATION TO HIERARCHICAL
DIRICHLET AND HIERARCHICAL GAMMA PROCESS

HDP HGP SHGP

G(l) ~ DP(O(()IJ,()) Cio ~ FP(O{U,N,Q) G() ~ FP(O{()7 ,uo)
P;~DP(a'Gy)  Jj ~TP(& Go) Jj ~T'P(aw;, Go)

Table: HDP, HGP and SHGP. P; & J; refer to the jth row of the transition and weight
matrix respectively.

e The HDP puts a prior over the transition matrix. SHGP puts a prior over the
weight matrix, imposes symmetry, allows reversibility.

e The SHGP modulo the symmetrization is equivalent to the HDP with specific
gamma distributions over the concentration parameters between the levels;

/ (&%)
i ~ Gamma X), —
o (opo(), )
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APPENDIX C

Inference

e Hybrid Monte Carlo (HMC) to sample the weights J;;
e Forward filtering, backward sampling, to sample state sequence Xi, . .., Xr.

e iHMM : Beam sampler
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