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MOTIVATION

Assume a Markov chain X1, . . . ,Xt, . . . ,XT , which is reversible:

P(X1, . . . ,Xt, . . .XT) = P(XT , . . . ,Xt, . . . ,X1)

Applications

• Modelling physical systems e.g transitions of a macromolecule conformation at
fixed temperature.

• Chemical dynamics of protein folding.

Tasks

• Find the transition operation (transition matrix) of the reversible Markov chain

• Put a prior on the reversible Markov chain

This work: proposes a Bayesian non-parametric prior for reversible Markov chains.
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REVERSIBLE MARKOV CHAINS

Problem: Put prior on reversible Markov chains. What does that mean?

Reversible chains and random walk on weighted graph
G(V, E ,W) weighted undirected graph

• vertex-set V = {i, r, q, . . . }
• edge-set E = {eir, eiq, erq, . . . }
• weight-setW = {Jir, Jrq, Jiq, . . . }

Discrete-time random walk on G →
Markov chain with Xt ∈ V and transition
matrix

P(i, j) :=
Jij∑
k Jik

,

Put a prior on the transition matrix P (or
on the weights Js).
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r q

Jir

Jrq

Jiq

Konstantina Palla 3 / 24



BASIC THEORY

Seminal work by Diaconis, Freedman and Coppersmith.

Markov Exchangeability
A process on a countable space S is Markov exchangeable if the probability of
observing a path X1, . . . ,Xt, . . . ,XT is only a function of X1 and the transition counts
C(i, j) := |{Xt = i,Xt+1 = j; 1 ≤ t < T}| for all i, j ∈ S.

Representation Theorem (Diaconis and Freedman, 1980)
A process is Markov exchangeable and returns to every state visited infinitely often
(recurrent), if and only if it is a mixture of recurrent Markov chains

P(X2, . . . ,Xt, . . . ,XT |X1) =

∫
P

T−1∏
t=1

P(Xt,Xt+1)µ(dP|X1)

where P is the set of stochastic matrices on S × S and the mixing measure µ(·|X1)
on P is uniquely determined.

Problem: Determine the prior µ. Not always easy.
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RELATED WORK

Random walk with reinforcement

• Idea: Simulate from the prior µ.

• Increase the edge weight by +1 each time an edge
is crossed.

1
T

[Jir, Jrq, Jiq]
T→∞−−−→ [Lir, Lrq, Liq] ∼ µ

T - total number of steps, µ - measure over edge
weights, the underlying prior

• Process Markov exchangeable, recurrent→
mixture of recurrent MCs

i

r q

1 +1

1

+1

1+1

Examples

• Edge Reinforcement Random Walk (ERRW) Diaconis and Freedman [1980],
Diaconis and Rolles [2006]; conjugate prior for the transition matrix for
reversible MCs.

• Edge reinforced schema by Bacallado et al. [2013] extends ERRW to countably
infinite space, reversible process, prior is difficult to characterise.
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RELATED WORK

Define a prior over reversible Markov chains:

1. Explicitly characterize the measure µ over transition matrix

2. Define an Edge Reinforcement schema

Proposed work: Explicitly construct the prior µ over the weights (or equivalently
the transition matrix)
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A MODEL FOR REVERSIBLE MARKOV CHAINS

General idea: Define the prior over the weights using the Gamma process
hierarchically.

Gamma process ΓP(α0H)

Completely random measure on X with Lévy measure

ν(dw, dx) = ρ(dw)H(dx) = a0w−1e−a0wdw H(dx).

on the space X × [0,∞). H is the base measure and α0 the concentration parameter.

G0 :=
∞∑
i=1

wiδXi ∼ ΓP(α0H)

Countably infinite collection of pairs {Xi,wi}∞i=1 sampled from a Poisson process
with intensity ν.
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A MODEL FOR REVERSIBLE MARKOV CHAINS

Define the prior over the weights using the Gamma process hierarchically.

Model

1. First level: ΓP over space X

G0 =

∞∑
i=1

wiδxi ∼ ΓP(α0, µ0)

Set of states S := {xi; xi ∈ X , i ∈ N},
countably infinite.

2. Second level: ΓP over space S × S.

G =

∞∑
i=1

∞∑
j=1

JijδXiXj ∼ ΓP(α, µ),

Jij|α,wi,wj ∼ Gamma(αwiwj, α)

Base measure atomic on S × S:
µ(xi, xj) = G0(xi)G0(xj)

X

G

α G0

α0 µ0

iwi

qwq r wr

J iq
J qi

J
ir

J
ri

Jqr

Jrq

Non-reversible: Directed edges, Jij 6= Jji
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A MODEL FOR REVERSIBLE MARKOV CHAINS

Reversibility
Impose symmetry
Jij = Jji ∼ Gamma(αwiwj, α)
Proof: Sufficient to prove detailed
balance

πiP(i, j) = πjP(j, i)

where πi =
∑

k Jik∑
j
∑

k Jjk
, 0 <

∑
k Jjk <∞

Corollary: π is the invariant measure of
the chain.

iwi

qwq r wr

J qi

J
ir

Jrq

We call the model the Symmetric Hierarchical Gamma Process (SHGP)
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A MODEL FOR REVERSIBLE MARKOV CHAINS

Properties

• Irreducibility
A MC is irreducible if ∃t ∈ N s.t Pt

ij > 0, ∀i, j ∈ S

SHGP is irreducible: , Jij,
∑

k Jik ∈ (0,∞)→ Pij =
Jij∑
k Jik

> 0 a.s ∀i, j ∈ S

• Recurrence A state i is positive recurrent if
E(τii) <∞, τij := min{t > 1 : Xt = j|X1 = i}

The SHGP is positive recurrent since the following applies:

Theorem (Levin et al. [2006])

An irreducible Markov chain is positive recurrent iff there exists a probability
distribution π such that π = πP.
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A MODEL FOR REVERSIBLE MARKOV CHAINS

Representation Theorem
A process is Markov exchangeable and returns to every state visited infinitely often
(recurrent), if and only if it is a mixture of recurrent Markov chains

P(X2, . . . ,Xt, . . . ,XT |X1) =

∫
P

T−1∏
t=1

P(Xt,Xt+1)µ(dP|X1)

where P is the set of stochastic matrices on S × S and µ(·|X1) on P is the mixing
measure.

SHGP

• Explicitly defined prior µ; hierarchical construction of weights

• SHGP is a mixture of recurrent, reversible Markov chains

• SHGP is recurrent, Markov exchangeable and reversible.
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THE SHGP HIDDEN MARKOV MODEL

X

G

α G0

α0 µ0

Y

E

X1 X2 X3 XT

Y1 Y2 Y3 YT

Finite number of states K. Countably
infinite model as K →∞.

G0 =

K∑
i=1

wiδxi

wi ∼ Gamma(α0µ0(xi), α0)

G =
K∑

i=1

K∑
j=1

Jijδxi,xj

Jij = Jji ∼ Gamma(αwiwj, α)

Xt ∈ {1, . . . ,K} - hidden state sequence.
E - emission matrix
Yt, t = 1, . . . , T - observed sequence with
observation model F(·|E)

Yt|Xt,E ∼iid F(·|EXt )

{Ek, k = 1, · · · ,K} state emission
parameters. F; multinomial, Poisson and
Gaussian observation models
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EXPERIMENTS

We ran the SHGP Hidden Markov model on 2 real world datasets with reversible
underlying systems. Comparison against

• SHGP HMM non-reversible

• infinite HMM (HDP)
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CHIP-SEQ DATA FROM NEURAL STEM CELLS

• ChIP-seq allows us to measure what proteins, with what chemical
modifications, are bound to DNA along the genome.

• Y matrix T × L, T = 2 · 104 and L = 6: counts, how many reads for the protein
of interest l map to bin t.

• Poisson (multivariate) likelihood model F.
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Figure: ChipSeq data for a small section of length 300 of the whole chromosome
region, along with the L = 6 identifiers (proteins of interest)
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CHIP-SEQ DATA FROM NEURAL STEM CELLS

Task: Predict held out values in Y .

Table: ChipSeq results for 10 runs using different hold out patterns (20%), a
truncation level of K = 30, 1000 iterations and a burnin of 700.

Model Alogirthm Train error Test error Train log likelihood Test log likelihood
Reversible HMC 0.9122± 0.0032 1.1158± 0.0097 −1.0488± 0.0009 −3.2422± 0.0023
Non-rev 0.9127± 0.0033 1.1167± 0.0095 −1.0494± 0.0009 −3.2478± 0.0022
iHMM Beam Sampler 0.9383± 0.0061 1.1365± 0.0107 −1.0727± 0.0041 −3.3047± 0.0027
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CHIP-SEQ DATA FROM NEURAL STEM CELLS

SHGP recovers known types of regulatory regions

• promoters.

• enhancers.

Figure: Learnt emission matrix L× K for ChIP-seq dataset. Element Elk is the
Poisson rate parameter for protein l in state k. Brighter indicates higher values

.
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SINGLE ION CHANNEL RECORDINGS DATASET

• Patch clamp recordings is a method for measuring conformational changes in
ion channels. These changes are accompanied by changes in electrical potential
(measurements).

• Y matrix 1× T , T = 104: 10KHz recording of electrical potential
measurements of a single alamethicin channel.

• Gaussian likelihood model F.

Yt|Xt,E ∼ N(Yt;µ, σ),

where µ = E(Xt, 1) and σ = E(Xt, 2) with K × 2 emission matrix E.

Table: Ion channel results across 10 different random hold out patterns, a truncation
of K = 15, 1000 iterations and a burnin of 700.

Model Alogirthm Train error Test error Train log likelihood Test log likelihood
Reversible HMC 0.023± 0.001 0.030± 0.002 2.204± 0.055 2.034± 0.058
Non-reversible HMC 0.027± 0.007 0.033± 0.007 2.108± 0.084 1.970± 0.078
iHMM Beam sampler 0.038± 0.005 0.045± 0.004 2.134± 0.070 2.008± 0.058
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SINGLE ION CHANNEL RECORDINGS DATASET

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

200

400

600

fr
eq

ue
nc

y

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

de
ns

ity

normalised current

Figure: Clusters found by the SHGP-HMM for the ion channel dataset, shown
relative to a histogram of levels across the recording. The smaller clusters at higher
currents are often merged in the model.
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CONCLUSION AND FUTURE WORK

• Constructed non-parametric prior for reversible Markov chains

• Presented a finite approximation

• Experimental results using SHGP as part of HMM

• Experimental results underline the importance of accounting for reversibility

Future Work

• Construct sampler for the infinite case. Use of sampling process proposed by
Favaro and Teh [2013].

• Look at the corresponding edge reinforcement schema (?)
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Thank you!
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APPENDIX A

Gamma process ΓP(α0H)

Completely random measure on X with Lévy measure

ν(dw, dx) = ρ(dw)H(dx) = a0w−1e−a0wdw H(dx).

on the space X × [0,∞). H is the base measure and α0 the concentration parameter.

G0 :=

∞∑
i=1

wiδXi ∼ ΓP(α0H)

Countably infinite collection of pairs {Xi,wi}∞i=1 sampled from a Poisson process
with intensity ν.
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APPENDIX B - RELATION TO HIERARCHICAL

DIRICHLET AND HIERARCHICAL GAMMA PROCESS

HDP HGP SHGP

G′0 ∼ DP(α0µ0) G0 ∼ ΓP(α0, µ0) G0 ∼ ΓP(α0, µ0)
Pj ∼ DP(α′G′0) J̃j ∼ ΓP(α̃,G0) Jj ∼ ΓP(αwj,G0)

Table: HDP, HGP and SHGP. Pj & Jj refer to the jth row of the transition and weight
matrix respectively.

• The HDP puts a prior over the transition matrix. SHGP puts a prior over the
weight matrix, imposes symmetry, allows reversibility.

• The SHGP modulo the symmetrization is equivalent to the HDP with specific
gamma distributions over the concentration parameters between the levels;

α′j ∼ Gamma(α0µ0(X ),
α0

αωj
)
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APPENDIX C

Inference

• Hybrid Monte Carlo (HMC) to sample the weights Jij

• Forward filtering, backward sampling, to sample state sequence X1, . . . ,XT .

• iHMM : Beam sampler
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