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1 Joint distribution tests

We give evidence for the correctness of our algorithm using the joint distri-
bution testing methodology of Geweke [2004]. There are two ways to sample
from the joint distribution, P (R, θ) over parameters, θ = {Z,C,W, α, γ, σ}
and data, R defined by a probabilistic model such as ILA. The first we will
refer to as “marginal-conditional” sampling, shown in Algorithm 1. Both steps
here are straightforward: sampling from the prior followed by sampling from
the likelihood model. The second way, referred to as “successive-conditional”
sampling, is shown in Algorithm 2, where Q represents a single (or multiple)
iteration(s) of our MCMC sampler. To validate our sampler we can then check,
either informally or using hypothesis tests, whether the samples drawn from the
joint P (R, θ) in these two different ways appear to have come from the same
distribution.

Algorithm 1 Marginal conditional

1: for m = 1 to M do
2: θ(m) ∼ P (θ)
3: R(m) ∼ P (R|θ(m))
4: end for

Algorithm 2 Successive conditional

1: θ(1) ∼ P (θ)
2: R(1) ∼ P (R|θ(1))
3: for m = 2 to M do
4: θ(m) ∼ Q(θ|θ(m−1), R(m−1))
5: R(m) ∼ P (R|θ(m))
6: end for

We apply this method to our ILA sampler with N = 10. We draw 104

samples using both the marginal-conditional and successive-conditional proce-
dures. We look at various characteristics of the samples, including the number
of features and the α, γ and bias hyperparameters. The distribution of the
number of features under the successive-conditional sampler matches that un-
der the marginal-conditional sampler almost perfectly as shown in Figure 1.
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Both the histogram and the quantile-quantile plot show the similarity of the
two distributions, with the straight line in the later indicating an almost perfect
match. The deviation from a straight line in the upper corner of the qq-plot is
a result of there being fewer samples available to estimate these quantiles accu-
rately. Under the successive-conditional sampler the average number of features
is 5.86 while under the marginal-conditional is 5.85 with standard deviations
4.83 and 4.86 respectively: a hypothesis test did not reject the null hypothesis
that the means of the two distributions are equal. While this cannot completely
guarantee correctness of the algorithm and code, 104 samples is a large number
for such a small model and thus provides strong evidence that our algorithm is
correct.

2 More trace and autocorrelation plots

The figures included here supplement Section 8.1 of the main paper. Figure 2
shows autocorrelation plots for ILA on the synthetic N = 90 dataset, for the two
chains in Figure 13 of the main paper, whereas Figure 3 shows autocorrelations
for ILA on the NIPS dataset, corresponding to the chain in Figure 14 of the
main paper. Figures 4 and 5 show traceplots and autocorrelation plots for single
runs of the IRM and LFRM respectively, both on the NIPS dataset.

3 Raftery and Lewis convergence diagnostic

This convergence diagnostic proposed by Raftery and Lewis [1992] calculates the
number of iterations required to estimate a particular quantile of the posterior
distribution (with respect to some parameter of interest) to within ±r of the
true value, qtrue, with probability, s. In other words, we wish to ensure that

Pr(qtrue − r < qinfer < qtrue + r) > s

where qinfer is the quantile estimated from our MCMC samples. The diagnostic
estimates both the number of iterations, T and the number of burn-in iterations,
S, necessary to satisfy this condition. It also provides a dependence factor
interpreted as the proportional increase in the number of iterations needed to
reach convergence taking into account dependence between the samples in the
chain.

For the two chains presented in Figure 13 of the main paper (N = 90 syn-
thetic dataset, ILA logistic), the values of this diagnostic for qtrue = 0.025,
r = 0.005 and s = 0.95 are shown in Table 1. The small burn-in values reported
suggest that both chains find a posterior mode almost immediately for each
monitored parameter. For the γ in the first chain, the first 24 iterations should
be discarded, and an estimated 33, 000 additional iterations performed in or-
der to estimate the 2.5% percentile of the posterior distribution to within 0.005
accuracy and 95% confidence. For the remaining variables and chains, 33, 000
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Table 1: Raftery and Lewis Diagnostic results for the first chain of Figure 13
of the main paper (ILA logistic, N = 90 synthetic dataset). A large number
of iterations are required to accurately estimate the posterior over the CRP
hyperparameter γ.

parameter q r s Burn-in (S) Total (T) Dependence factor
Chain 1

α 0.025 0.005 0.95 3 4235 1.1305
γ 24 33214 8.8665

bias 4 4983 1.3302
α 0.025 0.01 0.95 3 1061 1.1323
γ 24 8324 8.8837

bias 4 1249 1.3330
Chain 2

α 0.025 0.005 0.95 3 4322 1.1538
γ 14 14543 3.8823

bias 5 5763 1.5384
α 0.025 0.01 0.95 3 1083 1.1558
γ 14 3647 3.8922

bias 5 1445 1.5422

iterations are more than sufficient to estimate this quantile to the required pre-
cision, with only the first three to four samples needing to be discarded. The
diagnostics are similar for the second chain. However, if we relax the preci-
sion required for the estimate of this quantile to ±0.01 the number of iterations
needed decreases to under 9000 (excluding burn-in). The dependence factors
are reasonable (< 5) with only the dependence factor of the γ parameter having
a value close to 9. While this suggests a large number of iterations are required
if such stringest estimation conditions are to be met, we believe this is a result
of the distinct isolated posterior modes present for the synthetic example, which
are probably not representative of more complex real world networks.

This intuition is supported by our results for the NIPS dataset, for which the
Raftery and Lewis metrics for all three models are presented in Table 2. ILA
and LFRM require more iterations in order to be accurate (around 9000 and
7000 respectively), compared to IRM (around 3000) a conclusion that agrees
with the discussion in Section 8.1 of the main paper. However, these numbers
are much smaller than for the synthetic dataset.

4 Gelman and Rubin diagnostic

Five chains were used for this convergence test, each starting from different
initial values sampled from the prior, making them over-dispersed with respect
to the posterior distribution. We want to test whether all five chains converge
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Table 2: Raftery and Lewis Diagnostic results for IRM, LFRM and ILA on the
NIPS dataset. LFRM and ILA require a similar number of iterations, consider-
ably more than IRM for the same level of accuracy.

model parameter q r s Burn-in (S) Total (T) Dependence factor

ILA α 0.025 0.01 0.95 5 1473 1.5720

γ 10 2588 2.7620

bias 34 8790 9.3810

IRM α 0.025 0.01 0.95 14 3310 3.5326

β1 6 1757 1.8751

β2 6 1608 1.7161

LFRM α 0.025 0.01 0.95 2 893 0.9530

bias 25 6703 7.1537

Table 3: Gelman diagnostics for five ILA logistic MCMC chains run on the
N = 90 synthetic dataset. These values being close to 1 suggests all the chains
converge to the same target distribution.

parameter potential scale factor

α 1.0021

γ 1.0059

bias 1.0007

to the same target distribution. Failure could indicate the presence of a multi-
modal posterior distribution (different chains converge to different local modes)
or the need to run a longer chain. The test proposed by Gelman and Rubin
[1992], is based on a comparison of the within and between chain variances
for each parameter to give the potential scale reduction factor. A large factor
(� 1) indicates that the between-chain variance is substantially greater than the
within-chain variance, so that longer simulation is needed. We ran our model
on a synthetic dataset with N = 90 nodes for five different seeds. The scale
factor is given in the Table 3. All the potential scale factors are close to one
and indicate that each of the chains has stabilized, and they are likely to have
converged to the same mode of the target distribution. A similar conclusion is
drawn for the NIPS dataset as shown in Table 4.
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Table 4: Gelman diagnostics for five chains of ILA, IRM and LFRM on the NIPS
dataset. In all cases the potential scale factors are not very large, although the
values for ILA and LFRM are somewhat larger than for IRM, suggesting the
latter is mixing a little better.

model parameter potential scale factor

ILA α 1.4003

γ 1.4151

bias 1.1769

IRM α 1.0909

β1 1.0946

β2 1.2302

LFRM α 1.0266

bias 1.4539

J. Geweke. Getting it right. JASA, 99(467):799–804, 2004.

Adrian E. Raftery and Steven Lewis. How many iterations in the Gibbs sampler?
In Bayesian Statistics 4. Oxford University Press, 1992.
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(a) Empirical distributions on the number of features
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(b) qq-plot of the two empirical distributions.

Figure 1: Comparing the distribution of the number of features under the
maginal-conditional and successive-conditional samplers. Figure (a) shows
the empirical distribution over the number of clusterings (features) under the
marginal-conditional and successive-conditional sampler respectively. Figure (b)
shows the qq-plot of the two empirical distributions. The agreement of the two
distributions is evidence for the correctness of our MCMC sampler for ILA.
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Figure 2: Autocorrelation plots for the ILA parameters α, γ and bias, for syn-
thetic dataset with N = 90. The two rows correspond to the same two runs
as Figure 13 of the main paper. The autocorrelations generally decay rapidly
apart from for γ in the second run, which is a consequent of that chain having
explored two modes.
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(a) IBP concentration, α
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(b) CRP concentration, γ
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(c) Bias

Figure 3: Autocorrelations plots of the α, γ and bias parameters of ILA for
the NIPS dataset (N = 234). On this more complex real world dataset distinct
modes are not apparent but there is significant autocorrelation, particularly for
the bias parameter, for up to 100 iterations.
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(d) CRP concentration, γ
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(e) β1
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Figure 4: Traceplots and autocorrelation plots of the γ and weight hyperparam-
eters β1 and β2 of IRM for the NIPS dataset. For IRM burn-in is slower than
for ILA or LFRM but the autocorrelations decay rapidly.
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(c) IBP hyperparameter α
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(d) Bias

Figure 5: Traceplots and autocorrelation plots of the α and bias parameters
of LFRM for the NIPS dataset. As for ILA the bias parameter has significant
autocorrelation up to a delay of around 100.
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