ODIN: Optimal Discovery of High-value INformation
Using Model-based Deep Reinforcement Learning

Sara Zannone ' José Miguel Herniandez-Lobato?® Cheng Zhang® Konstantina Palla®

Abstract

We consider the problem of active feature selec-
tion where we dynamically choose the set of fea-
tures that acquires the highest predictive perfor-
mance relative to a task. We propose a model-
based deep reinforcement learning framework for
Optimal Discovery of high-value INformation
(ODIN) in which the agent either chooses to ask
for a new feature or to stop and predict. Utilizing
the ability of the partial variational autoencoder
(Ma et al., 2018) the framework models the condi-
tional distribution of the features allowing for data
efficiency. We introduce a novel cost function that
is sensitive to both cost and order of feature ac-
quisition. ODIN handles missing data naturally
and ensures the globally optimal solution for most
efficient feature acquisition while preserving data
efficiency. We show improved performance on
both synthetic and real-life datasets.

1. INTRODUCTION

Feature selection manifests as a need in many real world
settings. Often the goal is to discover features that are most
relevant to a particular outcome, e.g. prediction (Jovic et al.,
2014; Guyon & Elisseeff, 2003). Consider, for instance, the
case of a medical doctor trying to diagnose their patient. Ide-
ally, the doctor would have access to information provided
by all the available tests. However, this is impractical and
associated with a considerable cost (e.g. insurance costs,
hospital overhead etc.) In this scenario, active feature se-
lection is assigned with the task of sequentially choosing
the subset of features (lab tests, exams, etc.) that ensures
accuracy while keeping the cost low.

Traditional feature selection is not efficient in this setting.

"Tmperial College, London, UK 2Department of Engineer-
ing, University of Cambridge, Cambridge, UK *Microsoft Re-
search Cambridge, Cambridge, UK. Correspondence to: Sara
Zannone <sara.zannone@gmail.com >, Konstantina Palla <Kon-
stantina.Palla@microsoft.com>.

Real-world Sequential Decision Making workshop at ICML 2019,
Copyright 2019 by the author(s).

For example, different patients may require different tests,
and the outcome of a first exam could influence the choice of
the following medical investigations. We want to answer the
question: “which information shall we acquire next in order
to improve our prediction while keeping data acquisition
cost low? ” Automating this process is challenging, as we
need to learn an optimal decision making policy for each
data point/patient dynamically, assessing the information
provided by the test results observed so far.

In this work, we propose ODIN, a model-based reinforce-
ment learning framework for Optimal Discovery of high-
value INformation framework. ODIN casts the dynamic
feature selection task into an optimization problem using
reinforcement learning (RL) (Sutton & Barto, 1998). Our
main contributions are:

e An novel model based RL formulation for sequential
feature selection.

e A novel state model that alleviates the problem of small
sample size while naturally handling missingness.

e A reward function that enables the feature acquisition
to be order sensitive while the RL agent aims for the
globally optimal solution.

Our framework is general, allowing its application to many
different settings where the information (features) can be of
any form. We demonstrate the performance of our frame-
work on various settings and apply it in real-world datasets.

2. Proposed formulation

We formulate the sequential feature selection following the
notation used in (Ma et al., 2018). At each step, we deter-
mine the best feature x; to select from the set of unobserved
features xy, given the observed set z¢.

We look at the feature selection task as a RL problem. We
want to choose feature after feature (dynamically) in a fash-
ion that optimizes a reward, which gives high prediction
accuracy but with low cost. Considering the feature acqui-
sitions as actions, at each time step ¢, the agent finds itself
in the state s;, defined as the set of features observed so far
x0,. The agent has then to select the next feature (action)
a; = 1, where ¢ € U and U is the set of indices of the un-

ODIN

observed features. One time step later, the state changes to
St+1 = X0,,, = X0, U x; and the agent receives a reward
r41 for its action.

We further inspire the design of the framework from the
challenges we want to address. Scarcity, missingness in
data and the optimal feature acquisition sequence are our
drives. In many real world applications, we are dealing with
data that are scarce, hard or costly to find. For instance,
in many healthcare applications, finding enough training
examples is a challenge, e.g. think of rare diseases case.
The small dataset size often has an impact on the perfor-
mance of the machine learning approaches. Moreover, one
of the key problems often faced in data is missing values;
using the doctor diagnosis process as an example again, at
any point they only observe a small subset of the patient
exams (measurements) and yet they have to reason about
possible values for the remaining. We thus need a genera-
tive model as a component of the RL framework that can
simulate the data mechanism but also impute the missing
values given a variable subset of those. Further, we acknowl-
edge the importance of acquiring the features in a specific
sequence found in many settings. For instance, a doctor’s
decision for the next test depends on the result of the ones
already undertaken. There is a importance in the feature
sequence dependence. Thus, we introduce a novel sequence
dependent reward function.

The introduction of these components to the RL framework
constitutes our proposed methodology for the feature selec-
tion task. We now describe these two components along
with the policy network.

The generative model G models the distribution
Piixess = Plxt41]xe, 2], ice. the conditional distribu-
tion of the feature x; decided to be chosen next given the
current observed features x;. The generative model must
be able to work with missing data, something that few ex-
isting approaches for generative modeling can do. We use
the Partial Variational Autoencoder PVAE (Ma et al., 2018)
that learns distributions even when missingness is present.
Learning these distributions, the generative model augments
the framework with the ability to simulate additional train-
ing data and thus alleviates the problem of small sample
size.

The reward network R returns the immediate reward
associated with the choice of the feature at each step, i.e.
Rii = f(x¢, ;). The choice of the function is crucial as it
determines how the agent “ought” to behave. We design the
reward to account for both the merit of choosing the feature
x; to extend the feature sequence at step t but also for the
cost associated with acquiring an additional feature. Given
the observed features x; 1 = [X¢, z;], we define the loss
function L(f(X¢41), Yerue) that quantifies the accuracy of

the prediction given by the features observed at time ¢ + 1.
We also introduce the acquisition cost value ¢;. At every
time-step ¢, we have

Ry = L(f(X¢41, Ytrue) — Nt - Ci, (1)

where n; is the total number of features already observed
at step t. The function f(.) can be approximated by any
classification or regression algorithm. Similar to the gen-
erative network, the classifier/regressor should be able to
handle inputs of variable length. For this reason, we use the
PointNet deepNet architecture by (Qi et al., 2016) also used
as the encoder part of the PVAE in (Ma et al., 2018).

Assigning key importance to the order which the features
are acquired, we introduce the reward function in Equation
1. It allows for a feature-order sensitive and cost effective
acquisition; the first term quantifies the merit of choosing
the feature at time ¢ + 1, while the cost term strategically
forces for order in the acquisition by keeping the the fea-
ture collection cost low. In this case, ordering the features
acquired can get the most useful information first, while pro-
viding predictions on partial information and minimizing
the cost of the data collection. To the best of our knowledge,
we are the first ones to use such a reward function in a RL
framework for feature selection.

The policy network The policy defines the agent’s way
of behaving at a given time by mapping states to actions
to be taken in those states. In our framework, the policy is
stochastic, i.e. models a distribution over actions (feature se-
lections) and draws an action according to this distribution.
The policy network is implemented as a deep neural network
following again the PointNet architecture so that states of
variable length are stochastically mapped to actions (fea-
tures). The parameters of the network during policy learning
are optimized using the Proximal Policy Optimization algo-
rithm (PPO, Schulman et al., 2017).

- - simulated
training data policy network | <— .
experience

roll os

generative
model

Figure 1. Diagram of the proposed RL framework for dynamic
feature acquisition.

mode\learning

The cartoon diagram in Figure 1 and the description in
Algorithm 1 provide an overview of how the different com-
ponents are combined. During training, both the generative
model and the reward network are pretrained on the training

ODIN

Algorithm 1 Proposed algorithmic framework

Require: Partially observed training data Dy, =
{Xtr, Yir }; Fully unobserved dataset Dys; = {X¢st, Yist
1: Train Partial VAE and classifier on D,,..
2: Roll out D,y = {Xrolh YToll};
N(g(z; ¢)a o? x I) and yrou ~ fQ(Xroll)-
3: Learn the policy on D,.;; using PPO.
4: Sequentially acquire feature value ' to estimate 3
for each test point in Dy;.
for each test instance do
X0 <]
repeat
Choose to observe feature ¢ according to policy
X0 ' U X0
until agent decides to stop or all features are observed
end for

Xroll ~

dataset. The framework moves on with simulating experi-
ence by sampling roll-outs from the generative model and
add them to the original training dataset resulting in an aug-
mented one. The agent is then trained on the augmented
dataset. During test time, for each instance, the agent infers
the feature set sequentially using the learnt policy; after the
policy network recommends to observe a particular feature,
that feature is observed and the state is extended to include
the new feature. Then, we call the policy network again to
repeat the whole process.

3. Related Work

There is a plethora of works in the literature related to
the dynamic feature selection (Melville et al., 2004; Saar-
Tsechansky et al., 2009). However, these work actively
selected training set instead of applying it at test time.

We propose a general framework for efficient sequential
discovery of information in a variable-wise fashion using
a reinforcement learning architecture which can be used
in test time. Only few works have addressed this problem
before. The closely related work include Ma et al. (2018);
Shim et al. (2018); Janisch et al. (2017). Ma et al. (2018)
uses Bayesian experimental design sequentially for optimal
decision making at each step. It is a greedy method and does
not ensure the global optimality of the decision sequence.

Another closely related work is the work by (Shim et al.,
2018; Janisch et al., 2017) which deploy a RL agent to
sequentially decide on the feature to choose. It also allows
for a cost-sensitive feature acquisition but not order sensitive.
Their method does not provide an optimal solution at each
time-step of the sequence. On the contrary, we learn a
policy under a reward function designed to be sensitive
to the ordering of variables chosen. Such a property is
crucial in decision making settings when the decision to

Feature

1]2][3]4[5]6]7]8] 9] 10] 11520
100 0

2] [alol®

3 010

&4 1]1]o

Cls 001

6 1]o]1

7 ol1]1

8 1]1]1

-~vwon [[]~w(s5,03)

Figure 2. The Cube dataset. Data points are 20-dimensional vec-
tors and belong to one of 8 possible classes. All features follow a
Normal distribution, but only three of them are informative of the
class.

act next depends on the previous actions. Moreover, our
framework introduces roll outs from a generative model and
thus accounts for improved data efficiency.

4. Experiments

We evaluate the proposed framework under various settings.
Our major focus is on evaluating the performance in data
efficiency tasks and tasks where the sequence of the features
acquired so far affects the performance. ODIN shows clear
improvement comparing to greedy method such as Ma et al.
(2018), as well as tradtional RL method where the order for
the decision sequence is not considered (Shim et al., 2018).

4.1. Synthetic Dataset

We first show the performance of the framework on a syn-
thetic toy dataset to demonstrate ODIN in a controlled en-
vironment. The dataset is inspired by the CUBE dataset
(RiickstieB3 et al., 2013; Shim et al., 2018). It consists of
data points that belong to one of eight possible classes. Each
data point (instance) is composed of 20 features, but only
10 of them carry information useful for classification. Ad-
ditionally, a different subset of features is informative for
different classes. Figure 2 shows this dataset.

The task we are addressing here is classification. We con-
sidered three experiments focusing on the performance of
the approach on different data sizes (data efficiency), per-
centage of missing features and use of order sensitive or
not reward function. The first two aim to investigate the
contribution of the generative model component, while the
last one explores the reward function. For the last one, we
considered the reward function as given in Equation 1, while
we chose a reward with removed ordering sensitivity, i.e.

t£T

b T 2)

—C
R= ’
{ log P(Ctruelflzt)7

The acquisition cost is ¢ = 0.05 unless otherwise specified.

ODIN

48 80 96 ®128 ®144 @192 @480 MF
48 80 96 O128 ©144 @192 @480 MB
L]
° —
0.90 . 0.6 ¢
+ .
¥ -0.8 $ °
0.85 # 1
-1.0
0.80
-1.2
0.75 -1.4
0.70 Q@ o L D X D O
© @ KN N ¥R 9 g W LoF @
features Dataset size

Figure 2. (a) Accuracy Figure 2. (b) Average return

Figure 3. Comparison of the model based and model free imple-
mentation of the proposed architecture with different dataset sizes.

Data efficiency ¥ We compare the performance of our
agent when trained: i) straight on the original training
dataset x;, without the use of samples from the genera-
tive model (model-free) and ii) on the augmented training
dataset after sampling roll-outs from the generative model
(model-based). We consider a number of training datasets
with different sizes. Both approaches use the same number
of test data points after the policy is learnt.

Figure 3(a) shows the accuracy and the average number of
chosen features acquired by each agent, while Figure 3(b)
shows the corresponding average return as a function of the
training dataset size. We see that the PVAE can successfully
model the state and make ODIN select the useful feature
as desired without requiring massive amount of training
data. The generative model is particularly advantageous for
medium-sized datasets (96 and 128 datapoints in this exam-
ple). As the size of the original training dataset increases,
the performance difference between the two frameworks
shrinks. Last, in the regime of the 48 points, while the ac-
curacy achieved by the two frameworks is comparable, the
model-based does worse in the average return and acquires
a larger number of features on average indicating that the
PVAE cannot learn very efficiently in this small regime.

Missing data In this experiment we analyse the contri-
bution of the generative model component by introducing
different proportions of missingness in the training dataset.

Figure 4(a) presents the accuracy achieved by the model-
based framework for different proportions of missingness
and the associated average number of returned features in
the test points. The agent’s performance appears quite ro-
bust to the introduction of increasing missingness with the
achieved accuracy remaining high.

Feature-ordering sensitive reward We now explore
how the use of the proposed reward (Equation 1) affects
the performance of the model-based agent. We modify the

-0.49
0.94 -0.50
-0.51
0.93 S
o2 o A N R

features Missing data (%)

Figure 3. (a) Accuracy Figure 3. (b) Average return

Figure 4. Comparison of the model based implementation of the
proposed architecture for different proportions of missingness in
the Cube datacet

0.9 J
0.8
0.7
0.6
0.5 Random policy
c =0, ordered
0.4 c =0, not ordered
c=0.01
0.3 c=0.03
c=0.05
0.2 Jy — c=0.07
=0.1
01 —+ c
0 5 10 15 20
features

Figure 5. Comparison of ODIN reward and zero acquisition cost
and with reward used in (Shim et al., 2018) with different choices
of acquisition cost values.

Cube dataset so that each one of the informative features has
a different level of signal-to-noise ratio. Since the features
have different degrees of informative power, the order of
acquisition becomes relevant.

Figure 5 shows the average predicted probability of the
true class as achieved by the different framework settings.
Our proposed order-sensitive reward performs best. The
plot achieved by the agent with the order-sensitive reward
and zero cost appears as an upper threshold to the perfor-
mance achieved by the agents with no order sensitivity and
different acquisition cost value choices. The agent with
no order-sensitivy in its reward function, starts with a low
achieved probability of the true class but by increasing the
cost value, the performance increases as well. Although no
order sensitive reward is used, the component of the cost
presses the agent to choose fewer features. This leads the
agent to select the more informative features, thus implicitly
imposing ordering. However, even for high cost values, it
never surpasses the performance of the agent with explicit
order-sensitive reward function and zero cost value.

ODIN

100 200 @300 @1 MF
100)200 @300 @1 ~B
-7.0
| —4—
-6.0 .
| -7.5
-6.5
-8.0
-7.0
-8.5
Q S S N N
2 . 2 S S S ?
features Dataset size

Figure 5. (a) Absolute error Figure 5. (b) Average return

Figure 6. Performance plots of the model-based and model-free
frameworks on the Boston dataset.The plots display (a) absolute
error and (b) return value (negative absolute error).

4.2. UCI datasets

We next apply our framework to regression tasks using two
datasets from the UCI repository (Dheeru & Karra Taniski-
dou, 2017), i.e. Boston housing and energy efficiency
dataset. We investigate the data efficiency property of our
framework and to challenge the RL framework approach
against the greedy approach.

Data efficiency We follow a similar experimental setting
as in the case of the CUBE dataset and compare the per-
formance of the proposed model-based framework and the
model-free counterpart (see subsection 4.1). Once again,
we use the Partial VAE as the generative model component.
We use a PointNet as the regressor f(.) in our framework.
As before, we consider a number of training datasets of dif-
ferent sizes. We focus on the effect of the model component
and choose the no order-sensitive reward:

R:{ —c) gt #ET
_|ytrue_y‘

=T 3)
where cost ¢ set to 0.005.

Figures 6(a) and 7(a) show the accuracy for the two datasets
and the average number of acquired features, while Fig-
ure 6(b) and Figure 7(b) show the corresponding average
returned reward value on the test points for the different
training dataset splits. In these applications, the proposed
model-based framework outperforms the model-free ap-
proach with a significant advantage on the small training
size regimes. The error bars are computed using 5 runs.

Global comparison with EDDI Lastly, we compare our
framework to a greedy feature selection approach. For this,
we chose EDDI (Ma et al., 2018). Both frameworks use
Partial VAE to learn the generative distribution of the data.
In order to make a fair comparison with EDDI, we train the
same PVAE on the training set including the label. We also

100 200 @300 @200 @a vF
100 200 @300 @200 @al vB
——— -3 ¢ #
-2+
— 4
-3
-5
-4
-6
=5
-7
-6 > ™ o RO I

features Dataset size

Figure 6. (a) Absolute error Figure 6. (b) Average return

Figure 7. Performance plots of the model-based and model-free
frameworks on the Energy dataset.

0.0
03 —— RL
o2 —+— EDDI
—-0.4
-0.4
-0.5
-0.6
—-0.6
-0.8
-0.7
0 5 10 0 2 4 6 8
features # features

Figure 7. (a) Boston Figure 7. (b) Energy

Figure 8. Information curves of dynamic variable selection on the
two UCI datasets. The plots display negative test log likelihood
(y axis, the lower the better) during the course of dynamic feature
acquisition (x-axis) for the two frameworks.

use the same PVAE as regressor f(.) in our framework. For
EDDI, the sequence of features is then chosen following
a greedy method based on mutual information (Ma et al.,
2018). In our framework, we train a model-based agent to
maximise the average log likelihood, as predicted by the
PVAE, at every timestep. It is worth noting that, in order
to make the comparison with EDDI fair, our classifier is
effectively given by the PVAE itself. For fair comparison,
we also remove the STOP action and force the agent to
always acquire all features. ODIN finds a globally superior
solution comparing to EDDI.

5. Conclusion

In this paper, we present ODIN, a novel and efficient ar-
chitecture for dynamic active feature selection using the
Reinforcement Learning framework. The proposed archi-
tecture allows for the use of a generative model component
that augments the training dataset and handles missing data.
We also empower the feature acquisition of the agent with a
novel order-sensitive reward function. The framework has
demonstrated its effectiveness on feature acquisition tasks

ODIN

including real-world applications.

ODIN

A. Architecture and training details

We describe the architecture of the three components, i.e.
the PVAE, the regressor/classification (reward) network and
the policy network.

The implementation has the same basic architecture for
all components. The initial layers are a PointNet network
as in (Ma et al., 2018) that maps an unordered set to an
embedding of dimensionality K = 20. The PointNet then
feeds into an encoder network of dimensionality K-500-200
with ReLLU activations. The last layer changes depending
on the component; for the reward network, it has either a
sigmoid or a linear activation function, for classification and
regression respectively. For the policy network, the last layer
has two outputs: i) a sigmoid activation function that gives
the probability of taking each one of the available actions
(given the input state) and ii) a linear layer that outputs the
value of the input state. For the PVAE, the last layer outputs
the parameters of a diagonal Gaussian latent variable. The
decoder part of the PVAE is a network of dimensionality
50-100 for UCI and 500-200 for CUBE. The last layer of
the decoder estimates the mean of a gaussian for UCI, and
mean and variance for CUBE.

The training of the framework consists of two steps: First,
we train the PVAE and the classifier/regressor. Both compo-
nents are trained on the original data. Second, we train the
policy network on the roll outs.

We train the PVAE using the variable of interest, i.e. class
or dependent variable (target variable), as part of the feature
vector. During training the PVAE and the PointNet imple-
mentations of classifier/regressor, we introduce missingess
at random in the training dataset. We use a uniform distribu-
tion 2/(0, 1) to sample a missing rate parameter and choose
features randomly as unobserved.

The roll outs are sampled from the PVAE by randomly
dropping features but with an increasing missing rate €
(0,1).

B. Experiments

Here we provide more details on experiments conducted in
the main paper.

B.1. Synthetic dataset experiments

Data efficiency = We compare the performance of the
model free and model based frameworks on different splits
(sizes) of synthetic dataset sizes. The sizes shown in Figure
3,1.e. 48, 80, 96, 128, 144, 192 and 480, refer to the training
set size. The validation sets were taken to be always half
the size of the training set, i.e. 24, 40, 48, 64, 72, 96 and
240. The test set was composed of 1000 data points and was
the same for all runs. After training the PVAE, we sampled

20 o

Not ordered
¢ Ordered

18
16
14
12

10

[
6 °

0 0.01 0.03 0.05 0.07 0.1
Cost

Figure 9. Average number of features chosen as a function of cost
for ordered (blue) and unordered (red) reward functions in the
Boston.

(roll-outs) 10K data points. Each result reported in Figure 3
is an average over 5 runs.

Missing data We used a dataset of N = 4K dat-
apoints from Cube and split into 2000/1000/1000 for
train/validation/test. Numbers plotted in Figure 4 are an
average over 5 runs.

Reward Here, the dataset was slightly modified such that
informative features had different signal to noise ratio. The
three informative features of each class (2) were set to noise
levels ojo0 = 0.05, 0medium = 0.3 and o9, = 0.5. Here
we generated N = 1000 CUBE data points making sure
we keep class balance. Again, we split in 500/250/250 for
train/validation/test. Figure 5 plots the averaged (over the
test points) predicted probability of the true class averaged
(error bars plotted) over 5 runs. As we introduce cost terms
in the reward functions, the different settings, i.e. different
costs, force the agents to stop after having acquired different
number of features. Each value at each feature step index
in Figure 10 is the probability of the true class as averaged
over all the test points that have at least that many features
acquired by the agent. In Figure 5 in the main paper, the test
points with less features than the current feature index are
filled in with the probability of the true class returned in the
last acquired feature.

Figure 9 reports the average (over the test points) number of
features found by the different agents in the related figure 5
in the main paper.

B.2. UCI experiments

We ran experiments on 2 UCI datasets (Dheeru &
Karra Taniskidou, 2017); Boston housing and energy ef-

ODIN

1.0

0.8

0.6

Probability true class

—+ Ordered MB, cost = 0
Not ordered MB, cost = 0
Not ordered MB, cost = 0.01
Not ordered MB, cost = 0.03
—f— Not ordered MB, cost = 0.05
—}— Not ordered MB, cost = 0.07
—— Not ordered MB, cost = 0.1
|- Random policy

0.2

0.0 25 5.0 7.5 10.0 125 15.0 17.5 20.0
n. features

Figure 10. Comparison of ODIN reward and zero acquisition cost
and with reward used in (Shim et al., 2018) with different choices
of acquisition cost values and without filling in. Reported here is
the predicted probability of the true class.

ficiency. The task here is regression. The size of the two
datasets and their complete feature set is 506/13 and 768/8
respectively. All experiments are ran for 5 repetitions and
results are reported as the average.

Data efficiency As regressor we use a PointNet deepNet
that handles inputs of varialbe length. For both datasets
and for all splits, the train/validation/split percentage is
80/10/10.

Global comparison with EDDI To make the compari-
son with EDDI fairer, we use as regressor (provides the
reward) the trained Partial VAE itself. We also remove
the STOP action and force the agent to always acquire all
features.

The reward returned is an average log likelihood, as pre-
dicted by the Partial VAE, at every timestep. The average
log likelihood is calculated using 100 samples of x4 ~
p(x4lx0) through p(xelxo) ~ 30 p(xs|zm).
where z,, ~ q(z|xo) (Ma et al., 2018). The variables
of interest x4 are chosen to be the target variables of each
UCI dataset in the experiment. During test time and for the
plotting of the information curves in Figure 8, the negative
test log likelihood of the target variable is also estimated
using 100 samples.

References

Dheeru, D. and Karra Taniskidou, E. UCI machine learning

repository, 2017. URL http://archive.ics.uci.

edu/ml.

Guyon, I. and Elisseeff, A. An introduction to variable and

feature selection. J. Mach. Learn. Res., 3:1157-1182,
March 2003. ISSN 1532-4435.

Janisch, J., Pevny, T., and Lisy, V. Classification with
costly features using deep reinforcement learning. CoRR,
abs/1711.07364, 2017. URL http://arxiv.org/
abs/1711.07364.

Jovic, A., Brki, K., and Bogunovic, N. An overview of free
software tools for general data mining. pp. 1112-1117, 05
2014. ISBN 978-953-233-077-9. doi: 10.1109/MIPRO.
2014.6859735.

Ma, C., Tschiatschek, S., Palla, K., Hernandez-Lobato,
J. M., Nowozin, S., and Zhang, C. EDDI: Efficient Dy-
namic Discovery of High-Value Information with Partial
VAE. ArXiv e-prints, September 2018.

Melville, P., Saar-Tsechansky, M., Provost, F., and Mooney,
R. Active feature-value acquisition for classifier induc-
tion. In Rastogi, R., Morik, K., Bramer, M., and Wu, X.
(eds.), Proceedings - Fourth IEEE International Confer-
ence on Data Mining, ICDM 2004, Proceedings - Fourth
IEEE International Conference on Data Mining, ICDM
2004, pp. 483-486, 12 2004.

Qi, C. R, Su, H.,, Mo, K., and Guibas, L. J. Point-
net: Deep learning on point sets for 3d classification
and segmentation. CoRR, abs/1612.00593, 2016. URL
http://arxiv.org/abs/1612.00593.

RiickstieB3, T., Osendorfer, C., and van der Smagt, P. Mini-
mizing data consumption with sequential online feature
selection. Int. J. Machine Learning Cybernetics, 4:235—
243, 2013.

Saar-Tsechansky, M., Melville, P., and Provost, F. Active
feature-value acquisition. Management Science, 55(4):
664-684, 2009.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
CoRR, abs/1707.06347, 2017. URL http://arxiv.
org/abs/1707.06347.

Shim, H., Hwang, S. J., and Yang, E. Joint active feature
acquisition and classification with variable-size set en-
coding. In Advances in Neural Information Processing
Systems, 2018.

Sutton, R. S. and Barto, A. G. Introduction to Reinforcement
Learning. MIT Press, Cambridge, MA, USA, 1st edition,
1998. ISBN 0262193981.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1711.07364
http://arxiv.org/abs/1711.07364
http://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

