
A nonparametric variable clustering model

Konstantina Palla∗
University of Cambridge
kp376@cam.ac.uk

David A. Knowles∗
Stanford University

davidknowles@cs.stanford.edu

Zoubin Ghahramani
University of Cambridge

zoubin@eng.cam.ac.uk

Abstract

Factor analysis models effectively summarise the covariance structure of high di-
mensional data, but the solutions are typically hard to interpret. This motivates at-
tempting to find a disjoint partition, i.e. a simple clustering, of observed variables
into highly correlated subsets. We introduce a Bayesian non-parametric approach
to this problem, and demonstrate advantages over heuristic methods proposed to
date. Our Dirichlet process variable clustering (DPVC) model can discover block-
diagonal covariance structures in data. We evaluate our method on both synthetic
and gene expression analysis problems.

1 Introduction

Latent variables models such as principal components analysis (Pearson, 1901; Hotelling, 1933; Tip-
ping and Bishop, 1999; Roweis, 1998) and factor analysis (Young, 1941) are popular for summaris-
ing high dimensional data, and can be seen as modelling the covariance of the observed dimensions.
Such models may be used for tasks such as collaborative filtering, dimensionality reduction, or data
exploration. For all these applications sparse factor analysis models can have advantages in terms
of both predictive performance and interpretability (Fokoue, 2004; Fevotte and Godsill, 2006; Car-
valho et al., 2008). For example, data exploration might involve investigating which variables have
significant loadings on a shared factor, which is aided if the model itself is sparse. However, even
using sparse models interpreting the results of a factor analysis can be non-trivial since a variable
will typically have significant loadings on multiple factors.

As a result of these problems researchers will often simply cluster variables using a traditional
agglomerative hierarchical clustering algorithm (Vigneau and Qannari, 2003; Duda et al., 2001).
Interest in variable clustering exists in many applied fields, e.g. chemistry (Basak et al., 2000a,b)
and acturial science (Sanche and Lonergan, 2006). However, it is most commonly applied to gene
expression analysis (Eisen et al., 1998; Alon et al., 1999; D’haeseleer et al., 2005), which will also
be the focus of our investigation. Note that variable clustering represents the opposite regime to the
usual clustering setting where we partition samples rather than dimensions (but of course a clustering
algorithm can be made to work like this simply by transposing the data matrix). Typical clustering
algorithms, and their probabilistic mixture model analogues, consider how similar entities are (e.g.
in terms of Euclidean distance) rather how correlated they are, which would be closer in spirit to the
ability of factor analysis to model covariance structure. While using correlation distance (one minus
the Pearson correlation coefficient) between variables has been proposed for clustering genes with
heuristic methods, the corresponding probabilistic model appears not to have been explored to the
best of our knowledge.
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To address the general problem of variable clustering we develop a simple Bayesian nonparametric
model which partitions observed variables into sets of highly correlated variables. We denote our
method DPVC for “Dirichlet Process Variable Clustering”. DPVC exhibits the usual advantages
over heuristic methods of being both probabilistic and non-parametric: we can naturally handle
missing data, learn the appropriate number of clusters from data, and avoid overfitting.

The paper is organised as follows. Section 2 describes the generative process. In Section 3 we
note relationships to existing nonparametric sparse factor analysis models, Dirichlet process mixture
models, structure learning with hidden variables, and the closely related “CrossCat” model (Shafto
et al., 2006). In Section 4 we describe efficient MCMC and variational Bayes algorithms for per-
forming posterior inference in DPVC, and point out computational savings resulting from the simple
nature of the model. In Section 5 we present results on synthetic data where we test the method’s
ability to recover a “true” partitioning, and then focus on clustering genes based on gene expression
data, where we assess predictive performance on held out data. Concluding remarks are given in
Section 6.

2 The Dirichlet Process Variable Clustering Model

Consider observed data {yn ∈ RD : n = 1, .., N} where we have D observed dimensions and N
samples. The D observed dimensions correspond to measured variables for each sample, and our
goal is to cluster these variables. We partition the observed dimensions d = {1, ..., D} according
to the Chinese restaurant process (Pitman, 2002, CRP). The CRP defines a distribution over parti-
tionings (clustering) where the maximum possible number of clusters does not need to be specified
a priori. The CRP can be described using a sequential generative process: D customers enter a
Chinese restaurant one at a time. The first customer sits at some table and each subsequent customer
sits at table k with mk current customers with probability proportional to mk, or at a new table with
probability proportional to α, where α is a parameter of the CRP. The seating arrangement of the
customers at tables corresponds to a partitioning of the D customers. We write

(c1, ..., cD) ∼ CRP(α), cd ∈ N (1)

where cd = k denotes that variable d belongs to cluster k. The CRP partitioning allows each
dimension to belong only to one cluster. For each cluster k we have a single latent factor

xkn ∼ N(0, σ2
x) (2)

which models correlations between the variables in cluster k. Given these latent factors, real valued
observed data can be modeled as

ydn = gdxcdn + εdn (3)

where gd is a factor loading for dimension d, and εdn ∼ N(0, σ2
d) is Gaussian noise. We place a

Gaussian prior N(0, σ2
g) on every element gd independently. It is straightforward to generalise the

model by substituting other noise models for Equation 3, for example using a logistic link for binary
data ydn ∈ {0, 1}. However, in the following we will focus on the Gaussian case.

To improve the flexibility of the model, we put Inverse Gamma priors on σ2
g and σ2

d and a Gamma
prior on the CRP concentration parameter α as follows:

α ∼ G(1, 1)
σ2
g ∼ IG(1, 1)
σ2
d ∼ IG(1, 0.1)

Note that we fix σx = 1 due to the scale ambiguity in the model.

3 Related work

Since DPVC is a hybrid mixture/factor analysis model there is of course a wealth of related work,
but we aim to highlight a few interesting connections here.

DPVC can be seen as a simplification of the infinite factor analysis models proposed by Knowles
and Ghahramani (2007) and Rai and Daumé III (2008), which we will refer to as Non-parametric
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Figure 1: Graphical model structure that could be learnt using the model, corresponding to cluster
assignments c = {1, 1, 1, 2, 2, 3}. Gray nodes represent the D = 6 observed variables yd and white
nodes represent the K = 3 latent variables xk.

Sparse Factor Analysis (NSFA). Where they used the Indian buffet process to allow dimensions
to have non-zero loadings on multiple factors, we use the Chinese restaurant process to explicitly
enforce that a dimension can be explained by only one factor. Obviously this will not be appropriate
in all circumstances, but where it is appropriate we feel it allows easier interpretation of the results.
To see the relationship more clearly, introduce the indicator variable zdk = I[cd = k]. We can then
write our model as

yn = (G · Z)xn + εn (4)

where G is a D × K Gaussian matrix, and · denotes elementwise multiplication. Replacing our
Chinese restaurant process prior on Z with an Indian buffet prior recovers an infinite factor analysis
model. Equation 4 has the form of a factor analysis model. It is straightforward to show that the
conditional covariance of y given the factor loading matrix W := G · Z is σ2

xWWT + σ2
ε I.

Analogously for DPVC we find

cov(ydn, yd′n|G, c) =

{
σ2
xgdgd′ + σ2

dδdd′ , cd = cd′
0, otherwise (5)

Thus we see the covariance structure implied by DPVC is block diagonal: only dimensions belong-
ing to the same cluster have non-zero covariance.

The obvious probabilistic approach to clustering genes would be to simply apply a Dirichlet process
mixture (DPM) of Gaussians, but considering the genes (our dimensions) as samples, and our sam-
ples as “features” so that the partitioning would be over the genes. However, this approach would
not achieve the desired result of clustering correlated variables, and would rather cluster together
variables close in terms of Euclidean distance. For example two variables which have the relation-
ship yd = ayd′ for a = −1 (or a = 2) are perfectly correlated but not close in Euclidean space;
a DPM approach would likely fail to cluster these together. Also, practitioners typically choose ei-
ther to use restrictive diagonal Gaussians, or full covariance Gaussians which result in considerably
greater computational cost than our method (see Section 4.3).

DPVC can also be seen as performing a simple form of structure learning, where the observed
variables are partitioned into groups explained by a single latent variable. This is subset of the
structures considered in Silva et al. (2006), but we maintain uncertainty over the structure using a
fully Bayesian analysis. Figure 1 illustrates this idea.

DPVC is also closely related to CrossCat (Shafto et al., 2006). CrossCat also uses a CRP to partition
variables into clusters, but then uses a second level of independent CRPs to model the dependence
of variables within a cluster. In other words whereas the latent variables x in Figure 1 are discrete
variables (indicating cluster assignment) in CrossCat, they are continuous variables in DPVC cor-
responding to the latent factors. For certain data the CrossCat model may be more appropriate but
our simple factor analysis model is more computationally tractable and often has good predictive
performance as well. The model of Niu et al. (2012) is related to CrossCat in the same way that
NSFA is related to DPVC, by allowing an observed dimension to belong to multiple features using
the IBP rather than only one cluster using the CRP.

4 Inference

We demonstrate both MCMC and variational inference for the model.
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Algorithm 1 Marginal conditional
1: for m = 1 to M do
2: θ(m) ∼ P (θ)
3: Y (m) ∼ P (Y |θ(m))
4: end for

Algorithm 2 Successive conditional

1: θ(1) ∼ P (θ)
2: Y (1) ∼ P (Y |θ(1))
3: for m = 2 to M do
4: θ(m) ∼ Q(θ|θ(m−1), Y (m−1))
5: Y (m) ∼ P (Y |θ(m))
6: end for

4.1 MCMC

We use a partially collapsed Gibbs sampler to explore the posterior distribution over all latent vari-
ables g, c,X as well as hyperparameters σ2

d, σ
2
g and α. The Gibbs update equations for the factor

loadings g, factors X, noise variance σ2
d and σ2

g are standard, and therefore only sketched out be-
low with the details deferred to supplementary material. The Dirichlet concentration parameter α is
sampled using slice sampling (Neal, 2003). We sample the cluster assignments c using Algorithm 8
of Neal (2000), with g integrated out but instantiating X. Updating the factor loading matrix G is
done elementwise, sampling from

gdk|Y,G−dk,C,X, σg, σx, σd, α ∼ N (µ∗g, λ
−1
g ) (6)

The factors X can be jointly sampled as

X:n|Y,G,C, σg, σx, σd, α ∼ N (µX:n
,Λ−1X:n

) (7)
When sampling the cluster assignments, c we found it beneficial to integrate out g, while instantiat-
ing X. We require

P (cd = k|yd:, xk:, σg, c−d) = P (cd|c−d)
∫
P (yd:|xk:, gd)p(gd|σg)dgd

the calculation of which is given in the supplementary material, along with expressions for
µ∗g, λg,µX:n

and ΛX:n
.

We confirm the correctness of our algorithm using the joint distribution testing methodology of
Geweke (2004). There are two ways to sample from the joint distribution, P (Y, θ) over parameters,
θ = {g, c,X} and data, Y defined by a probabilistic model such as DPVC. The first we will refer
to as “marginal-conditional” sampling, shown in Algorithm 1. Both steps here are straightforward:
sampling from the prior followed by sampling from the likelihood model. The second way, referred
to as “successive-conditional” sampling is shown in Algorithm 2, where Q represents a single (or
multiple) iteration(s) of our MCMC sampler. To validate our sampler we can then check, either
informally or using hypothesis tests, whether the samples drawn from the joint P (Y, θ) in these two
different ways appear to have come from the same distribution.

We apply this method to our DPVC sampler with just N = D = 2, and all hyperparameters fixed
as follows: α = 1, σd = 0.1, σg = 1, σx = 1. We draw 104 samples using both the marginal-
conditional and successive-conditional procedures. We look at various characteristics of the sam-
ples, including the number of clusters and the mean of X. The distribution of the number of features
under the successive-conditional sampler matches that under the marginal-conditional sampler al-
most perfectly. Under the correct successive-conditional sampler the average number of clusters is
1.51 (it should be 1.5): a hypothesis test did not reject the null hypothesis that the means of the two
distributions are equal. While this cannot completely guarantee correctness of the algorithm and
code, 104 samples is a large number for such a small model and thus gives strong evidence that our
algorithm is correct.

4.2 Variational inference

We use Variational Message Passing (Winn and Bishop, 2006) under the Infer.NET frame-
work (Minka et al., 2010) to fit an approximate posterior q to the true posterior p, by minimising the
Kullback-Leibler divergence

KL(q||p) = −H[q(v)]−
∫
q(v) log p(v)dv (8)
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where H[q(v)] = −
∫
q(v) log q(v)dv is the entropy and v = {w,g, c,X, σ2

d, σ
2
g}, where w is

introduced so that the Dirichlet process can be approximated as

w ∼ Dirichlet(α/T, ..., α/T ) (9)
cd ∼ Discrete(w) (10)

where we have truncated to allow a maximum of T clusters. Where not otherwise specified we
choose T = D so that every dimension could use its own cluster if this is supported by the data.
Note that the Dirichlet process is recovered in the limit T →∞.

We use a variational posterior of the form

q(v) = qw(w)qσ2
g
(σ2
g)

D∏
d=1

qcd(cd)qσ2
d
(σ2
d)qgd|cd(gd|cd)

N∏
n=1

qxnd
(xnd) (11)

where qw is a Dirichlet distribution, each qcd is a discrete distribution on {1, .., T}, qσ2
g

and qσ2
d

are
Inverse Gamma distributions and qnd and qgd|cd are univariate Gaussian distributions. We found that
using the structured approximation qgd|cd(gd|cd) where the variational distribution on gd is condi-
tional on the cluster assignment cd gave considerably improved performance. Using the representa-
tion of the Dirichlet process in Equation 10 this model is conditionally conjugate (i.e. all variables
have exponential family distributions conditioned on their Markov blanket) so the VB updates are
standard and therefore omitted here.

Due to the symmetry of the model under permutation of the clusters, we are require to somehow
break symmetry initially. We experimented with initialising either the variational distribution over
the factors qxnd

(xnd) with mean N(0, 0.1) and variance 1 or each cluster assignments distribution
qcd(cd) to a sample from a uniform Dirichlet. We found initialising the cluster assignments gave
considerably better solutions on average. We also typically ran the algorithm L = 10 times and took
the solution with the best lower bound on the marginal likelihood.

We also experimented with using Expectation Propagation (Minka, 2001) for this model but found
that the algorithm often diverged, presumably because of the multimodality in the posterior. It might
be possible to alleviate this using damping, but we leave this to future work.

4.3 Computational complexity

DPVC enjoys some computational savings compared to NSFA. For both models sampling the fac-
tor loadings matrix is O(DKN), where K is the number of active features/clusters. However, for
DPVC sampling the factors X is considerably cheaper. Calculating the diagonal precision matrix is
O(KD) (compared to O(K2D) for the precision in NSFA), and finding the square root of the di-
agonal elements is negligible at O(K) (compared to a O(K3) Cholesky decomposition for NSFA).
Finally both models require an O(DKN) operation to calculate the conditional mean of X. Thus
where NSFA is O(DKN +DK2 +K3), DPVC is only O(DKN), which is the same complexity
as k-means or Expectation Maximisation (EM) for mixture models with diagonal Gaussian clus-
ters. Note that mixture models with full covariance clusters would typically cost O(DKN3) in this
setting due to the need to perform Cholesky decompositions on N ×N matrices.

5 Results

We present results on synthetic data and two gene expression data sets. We show comparisons
to k-means and hierarchical clustering, for which we use the algorithms provided in the Matlab
statistics toolbox. We also compare to our implementation of Bayesian factor analysis (see for
example Kaufman and Press (1973) or Rowe and Press (1998)) and the non-parametric sparse factor
analysis (NSFA) model of (Knowles and Ghahramani, 2011). We experimented with three publicly
available implementations of DPM of Gaussian using full covariance matrices, but found that none
of them were sufficiently numerically robust to cope with the high dimensional and sometimes
ill conditioned gene expression data analysed in Section 5. To provide a similar comparison we
implemented a DPM of diagonal covariance Gaussians using a collapsed Gibbs sampler.
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Figure 2: Performance of DPVC compared to k-means at recoverying the true partitioning used to
simulate the data.

Dataset DPVC NSFA DPM FA (K = 5) FA (K = 10) FA (K = 20)
Breast cancer −0.876± 0.024 −0.634± 0.038 −1.348± 0.108 −1.129± 0.043 −1.275± 0.056 −1.605± 0.072
Yeast −0.849± 0.012 −0.653± 0.061 −1.397± 0.419 −1.974± 1.925 −1.344± 0.165 −1.115± 0.052

Table 1: Predictive performance (mean log predictive loglikelihood over the test elements) results
on two gene expression datasets.

5.1 Synthetic data

In order to test the ability of the models to recover a true underlying partitioning of the variables
into correlated groups we use synthetic data. We generate synthetic data with D = 20 dimensions
partitioned into K = 5 equally sized clusters (of four variables). Within each cluster we sample
analoguously to our model: sample xkn ∼ N(0, 1) for all k, n, then gd ∼ N(0, 1) for all d and
finally sample ydn ∼ N(gdxcdn, 0.1) for all d, n. We vary the sample size N and perform 10
repeats for each sample size. We compare k-means (with the true number of clusters 5) using
Euclidean distance and correlation distance, and DPVC with inference using MCMC or variational
Bayes. To compare the inferred and true partitions we calculate the well known Rand index, which
varies between 0 and 1, with 1 denoting perfect recovering of the true clustering. The results are
shown in Figure 2. We see that the MCMC implementation of DPVC consistently outperforms
the k-means methods. As expected given the nature of the data simulation, k-means using the
correlation distance performs better than using Euclidean distance. DPVC VB’s performance is
somewhat disappointing, suggesting that even the structured variational posterior we use is a poor
approximation of the true posterior. We emphasise that k-means is given a significant advantage:
it is provided with the true number of clusters. In this light, the performance of DPVC MCMC is
impressive, and the seemingly poor performance of DPVC VB is more forgivable (DPVC VB used
a truncation level T = D = 20).

5.2 Breast cancer dataset

We assess these algorithms in terms of predictive performance on the breast cancer dataset of West
et al. (2007), including 226 genes across 251 individuals. The samplers were found to have con-
verged after around 500 samples according to standard multiple chain convergence measures, so
1000 MCMC iterations were used for all models. The predictive log likelihood was calculated using
every 10th sample form the final 500 samples. We ran 10 repeats holding out a different random 10%
of the the elements of the matrix as test data each time. The results are shown in Table 1. We see
that NSFA performs the best, followed by DPVC. This is not surprising and is the price DPVC pays
for a more interpretable solution. However, DPVC does outperform both the DPM and the finite
(non-sparse) factor analysis models. We also ran DPVC VB on this dataset but its performance was
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Figure 3: Clustering of the covariance structure. Left: k-means using correlation distance. Middle:
Agglomerative heirarchical clustering using average linkage and correlation distance. Right: DPVC
MCMC.

significantly below that of the MCMC method, with a predictive log likelihood of −1.154± 0.010.
Performing a Gene Ontology enrichment analysis we find clusters enriched for genes involved in
both cell cycle regulation and cell division, which is biologically reasonable in a cancer orientated
dataset

On this relatively small dataset it is possible to visualise the D × D empirical correlation matrix
of the data, and investigate what structure our clustering has uncovered, as shown in Figure 3. The
genes have been reordered in each plot according three different clusterings coming from k-means,
hierarchical clustering and DPVC (MCMC, note we show the clustering corresponding to the pos-
terior sample with the highest joint probability). For both k-means and hierarchical clustering it
was necessary to “tweak” the number of clusters to give a sensible result. Hierarchical clustering in
particular appeared to have a strong bias towards putting the majority of the genes in one large clus-
ter/clade. Note that such a visualisation is straightforward only because we have used a clustering
based method rather than a factor analysis model, emphasising how partitionings can be more useful
summaries of data for certain tasks than low dimensional embeddings.

5.3 Yeast in varying environmental conditions

We use the data set of (Gasch et al., 2000), a collection of N = 175 non-cell-cycle experiments
on S. cerevisiae (yeast), including conditions such as heat shock, nitrogen depletion and amino acid
starvation. Measurements are available for D = 6152 genes. Again we ran 10 repeats holding
out a different random 10% of the the elements of the matrix as test data each time. The results
shown in Table 1 are broadly consistent with our findings for the breat cancer dataset: DPVC sits
between NSFA and the less performant DPM and FA models. Running 1000 iterations of DPVC
MCMC on this dataset takes around 1.2 hours on a standard dual core desktop running at 2.5GHz
with 4Gb RAM. Unfortunately we were unable to run the VB algorithm on a dataset of this size due
to memory constraints.

6 Discussion

We have introduced DPVC, a model for clustering variables into highly correlated subsets. While,
as expected, we found the predictive performance of DPVC is somewhat worse than that of state of
the art nonparametric sparse factor analysis models (e.g. NSFA), DPVC outperforms both nonpara-
metric mixture models and Bayesian factor analysis models when applied to high dimensional data
such as gene expression microarrays. For a practitioner we see interpretability as the key advantage
of DPVC relative to a model such as NSFA: one can immediately see which groups of variables are
correlated, and use this knowledge to guide further analysis. An example use one could envisage
would be using DPVC in an analoguous fashion to principal components regression: regressing a
dependent variable against the inferred factors X. Regression coefficients would then correspond to
the predictive ability of the clusters of variables.
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