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Abstract

Background: Postoperative hypotension is associated with adverse outcomes, but intraoperative

prediction of postanaesthesia care unit (PACU) hypotension is not routine in anaesthesiology workflow. Although ma-

chine learning models may support clinician prediction of PACU hypotension, clinician acceptance of prediction models

is poorly understood.

Methods: We developed a clinically informed gradient boosting machine learning model using preoperative and intra-

operative data from 88 446 surgical patients from 2015 to 2019. Nine anaesthesiologists each made 192 predictions of

PACU hypotension using a web-based visualisation tool with and without input from the machine learning model.

Questionnaires and interviews were analysed using thematic content analysis for model acceptance by

anaesthesiologists.

Results: The model predicted PACU hypotension in 17 029 patients (area under the receiver operating characteristic

[AUROC] 0.82 [95% confidence interval {CI}: 0.81e0.83] and average precision 0.40 [95% CI: 0.38e0.42]). On a random

representative subset of 192 cases, anaesthesiologist performance improved from AUROC 0.67 (95% CI: 0.60e0.73) to

AUROC 0.74 (95% CI: 0.68e0.79) with model predictions and information on risk factors. Anaesthesiologists perceived

more value and expressed trust in the prediction model for prospective planning, informing PACU handoffs, and drawing

attention to unexpected cases of PACU hypotension, but they doubted the model when predictions and associated

features were not aligned with clinical judgement. Anaesthesiologists expressed interest in patient-specific thresholds

for defining and treating postoperative hypotension.

Conclusions: The ability of anaesthesiologists to predict PACU hypotension was improved by exposure to machine

learning model predictions. Clinicians acknowledged value and trust in machine learning technology. Increasing fa-

miliarity with clinical use of model predictions is needed for effective integration into perioperative workflows.
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Editor’s key points

� Postoperative hypotension is associated with adverse

outcomes, but there is currently no reliable method

for predicting postoperative hypotension.

� This study demonstrates that a machine learning

model, combining preoperative and intraoperative

data, can predict hypotension in the recovery area

better than clinicians using readily available clinical

information without access to the machine learning

predictions.

� Clinicians were willing to modify their predictions

regarding hypotension based on the machine

learning predictions, suggesting that incorporation of

interpretable machine learning algorithms into clin-

ical practice could increase the accuracy with which

postoperative hypotension is anticipated and poten-

tially prevented.
Perioperative hypotension is common and associated with

adverse postoperative outcomes, including myocardial

infarction, acute kidney injury, and stroke.1e10 Machine

learning (ML) models may support clinician prediction of

perioperative hypotension, enabling improved approaches to

prevention, detection, and treatment of these events.11e16

However, anaesthesiologist acceptance of and interaction

with ML models of hypotension remain poorly understood,

limiting efforts to translate these tools intomeaningful clinical

workflows.

To date, efforts to develop and validate predictive models

for perioperative hypotension have focused predominantly on

the intraoperative period.11e14,16 Although intraoperative hy-

potension has demonstrated a reproducible association with

adverse outcomes, such as acute kidney injury, myocardial

injury, and death,17 a large burden of the organ dysfunction

and mortality attributable to perioperative hypotension has

been shown to arise from hypotensive events occurring during

the early postoperative period,2,17e19 when the reduced in-

tensity of monitoring routinely results in delayed or missed

detection. For example, a sub-study of the Perioperative

Ischemic Evaluation-2 trial demonstrated that hypotension

occurring during the intraoperative period vs the remainder of

the operative day had similar time-weighted associations with

myocardial infarction andmortality,17 and a subsequent study

revealed that hypotensive events are particularly prolonged

and severe in the postoperative period, but often go unrecog-

nised and untreated in this setting.19

Intraoperative predictions of postoperative hypotension

therefore have potential to improve patient- and population-

level outcomes by prompting interventions that reduce the

severity or duration of postoperative hypotension.11,12 For

example, this information could prompt more frequent vital

sign measurements in selected patients during recovery and

continuation of intraoperative infusions or monitoring, or

facilitate identification of actionable factors in individual

cases (e.g. hypovolaemia, neuraxial anaesthetic medication

dosing, or adrenal insufficiency). However, no validated clin-

ical decision support tools that help predict or prevent hypo-

tension in the postoperative setting exist. Additionally, the

interaction of anaesthesiologists with ML interfaces has been

examined in other perioperative contexts, such as prediction

of impending intraoperative hypoxaemia,20 but human factors
impacting the clinical implementation of ML decision-support

systems in the PACU may be context specific and have not

previously been examined.

In this study, we developed a clinically informed and

interpretable ML model to perform end-of-surgery predictions

of PACU hypotension and identify clinical factors contributing

to individual risk. We then studied the interaction of experi-

enced anaesthesiologists with this system by measuring the

impact of the model on predictions of PACU hypotension and

eliciting structured feedback regarding necessary consider-

ations for future successful integration into the clinical envi-

ronment. Overall, we aspired to extend our understanding of

clinician acceptance of ML models in clinical anaesthesiology

workflow.
Methods

This study was approved by the University of Washington

(UW) Institutional Review Board (STUDY00005331 and

STUDY00011636 [exempt]) and by the UW School of Medicine

for legal, privacy, and compliance.

This mixed methods study was a partnership between the

UW Department of Anaesthesiology and Pain Medicine and

the Microsoft Corporation (MSR) with three phases: (i) hypo-

tension ML model development, (ii) clinician validation of the

model, and (iii) qualitative examination of clinician accep-

tance of the model. The partnership included MSR team visits

to UWMedicine to learn about clinician challenges with PACU

hypotension, observations of patient care, and in-person in-

terviews with healthcare providers to understand the clinical

and organisational context of hypotension management. The

UWeMSR team also held weekly teleconference meetings for

acculturation to the issue of PACU hypotension. All this

informed co-development of the clinically informedMLmodel

and feature identification.
Machine learning model development

Inclusion and exclusion criteria

Surgical procedures performed on adults (�18 yr) from 2015

through 2019 resulting in PACU stays were included. Cardiac,

obstetric, non-operating theatre, and procedures missing

more than 40% of key features were excluded (Supplementary

Table 1).
Data description and feature derivation

The UW used an integrated perioperative information man-

agement system (Merge AIMS, Inc., Hartland, WI, USA and

Cerner, Inc., North Kansas City, MO, USA). Data were extracted

from two UW hospitals and de-identified using the Health

Insurance Portability and Accountability Act (HIPAA) Safe

Harbor method.21 Static and time-dependent model features

were then derived from this limited data set composed of

routinely captured clinical variables from the electronic health

record (Supplementary section 3).

For time-varying measures, we hypothesised that physio-

logical responses to anaesthetic and surgical interventions and

the interactions of these changes with postoperative hypo-

tension would vary over the course of surgery. We, therefore,

split the surgical period into three clinically relevant phases: (i)

induction of anaesthesia to procedure start, (ii) maintenance

(procedure start to procedure end), and (iii) emergence (proced-

ure end to last recorded BP [proxy for departure from operating
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theatre]). The complete set is listed in Supplementary Table 2.

Artifacts in the vitals data were detected and filtered from

analysis, described in Supplementary section 2. Predictions of

PACU hypotension were made at the time of operating theatre

departure (end of emergence).
Hypotension outcome definition

Blood pressure data comprise nurse-validated recordings of BP

(invasive or noninvasive) made approximately every 15 min

within PACU. We reviewed the histogram of postoperative BP

recording frequency and arrived upon a threshold of 10 min,

an estimated upper time limit within which a nurse would

typically make a new recording of BP measurement if the

previous one is an artifact.

PACU hypotension was defined as at least one measure-

ment of MAP <65mmHg18 in the first 6 h of PACU admission. If
Fig 1. Clinician validation tool interface: (a) without and (b) with mode
MAP was not recorded, the patient was labelled hypotensive if

systolic BP was measured <90 mm Hg, as these definitions are

aligned with clinical escalation workflows in the hospitals,

and even brief periods ofmild hypotension are associated with

poor outcomes.18 Patients for whom hypotension was pre-

vented counted as negative cases; hence, we are considering

‘unanticipated’ or ‘unmanaged’ hypotension. Approximately

5% of the study cohort had BP monitored through an arterial

line in the PACU. For all patients, including patients who had

noninvasive BP monitoring, BPs were measured every 5e15

min. Spurious values caused by transiently low MAP readings

were removed. Although use of a binary labelling system does

not capture the dynamic range of hypotension experienced by

patients, these definitions are aligned with recent Periopera-

tive Quality Initiative consensus statements on perioperative

hypotension18,22 and are consistent with triggers commonly

included in postoperative ‘rapid response’ protocols in the
l score.



Fig 1. (continued).
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USA.23 More details are in Supplementary section ‘Hypoten-

sion labelling’.
Model creation, training, and testing

We divided the data from the set of included procedures into

training, validation, and test sets, ensuring that patients with

multiple procedures were assigned to only one set. The test set

was defined as the most recent 16% of procedures, to emulate

the expected use of the model and provide the closest

approximation of prospective performance.24 We trained a

gradient-boosted tree model using the LightGBM library

v3.1.125 (Supplementary Table 3), which previously demon-

strated strong performance on clinical tasks, is amenable to

interpretation,26,27 and utilises computational resources

potentially compatible with prospective implementation. The

validation set was used for final model selection and post hoc
calibration, and the test set was used to estimate performance.

Missing-value imputation was not performed, as it is not

necessary for this model class.

The model was evaluated for accuracy by calculating the

area under the receiver operating characteristic (AUROC)

curve and area under the precisionerecall curve (AUPRC) and

average precision. To evaluate calibration, we calculated the

Brier score and reliability diagram. To quantify variability in

the model’s performance, we constructed 95% confidence in-

tervals (CIs) using 1000 bootstrap samples from the predictions

for the AUROC, AUPRC, and average precision. We processed

the data set and implemented the model in Python 3.7.
Hypotension risk and feature importance

The model outcome was a probability given the vector rep-

resentation of the static and time-varying features and used



Table 1 Patient characteristics used in the full and test data sets. Values aremean (SD) or number of procedures (%). ‘Induction’ refers to
the period between the start of anaesthesia and the start of surgery. ‘Maintenance’ spans the surgery duration. ‘Emergence’ is the time
between the end of surgery and the end of anaesthesia. The choice of vitals appearing here is based on the vitals that appear as most
contributive to the model’s predictions (see Fig. 3). Here, the average value of the depth of MAP is below 65 mm Hg, each weighted by
the time until the next measurement. For medications that are represented as counts (number of times given during surgery or
initiated for infusions), means refer to the mean of the count across the patient sample. ENT, ear, nose and throat; IQR, inter-quartile
range; SD, standard deviation; TWA, time-weighted average.

Full data set, n¼104 875 Test data set, n¼17 029

Demographics
PACU hypotension, n (%) 12 601 (12.0) 1943 (11.4)
Age, yr, median (IQR) 54 (26) 54 (25)
Facility, n (%) 52 516 (50) 8613 (51)
Female sex, n (%) 50 279 (48) 8112 (48)
Race, n (%)
White 83 721 (80) 13 832 (81)
Black/African American 7922 (8) 1263 (7)
Asian 6907 (7) 1040 (6)
American Indian 2827 (3) 448 (3)
Other 3190 (3) 427 (3)

Procedure details
Emergency status, n (%) 6356 (6) 838 (5)
ASA physical status, n (%)
1 11 372 (11) 1322 (8)
2 47 773 (46) 7041 (41)
3 41 334 (39) 7766 (46)
�4 4396 (4) 900 (5)

Surgical specialty, n (%)
Orthopaedic 30 515 (29) 4786 (28)
General 18 071 (17) 2748 (16)
Urology 10 738 (10) 1964 (12)
ENT 8667 (8) 1493 (9)
Gynaecology 7516 (7) 1082 (6)
Ophthalmology 6700 (6) 1016 (6)
Neurology 5795 (6) 1008 (6)
Plastic 4848 (5) 882 (5)
Vascular 2522 (2) 568 (3)
Oral and maxillofacial 2306 (2) 303 (2)
Thoracic 2304 (2) 532 (3)
Other 3887 (4) 481 (3)

Comorbidities
BMI, kg m-2, mean (SD) 28.8 (7.5) 28.9 (7.9)
Diabetes mellitus, n (%) 16 968 (16) 3214 (19)
Hypertension, n (%) 9138 (9) 1394 (8)

Vitals
Diastolic BP (mm Hg)
Induction (mean) 67 (12) 67 (12)
Maintenance (mean) 64 (12) 65 (12)
Emergence (mean) 71 (16) 71 (16)

MAP (mm Hg)
Induction (mean) 82 (13) 83 (13)
Maintenance (mean) 79 (12) 80 (12)
Emergence (mean) 87 (17) 87 (17)

Systolic BP (mm Hg)
Induction (mean) 114 (18) 115 (18)
Maintenance (mean) 111 (16) 112 (16)
Emergence (mean) 121 (22) 121 (22)

Drugs
Vasopressor infusion i.v. count, median (IQR) 0 (1) 0 (2)
Opioid infusion i.v. count, median (IQR) 0 (0) 0 (0)
Anti-emetic bolus i.v. count, median (IQR) 1 (1) 2 (1)

Other
Estimated blood loss (ml), median (IQR) 5 (50) 5 (50)
Intraoperative hypotension (TWA; mm Hg * h), median (IQR) 0.5 (1.6) 0.5 (1.5)

PACU hypotension prediction model - 627
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as the risk score of unanticipated or unmanaged PACU hy-

potension. The importance of each model feature was

assessed using Shapley Additive Explanations.27 Feature

importance was determined by ranking each feature by its

mean absolute Shapley value across all predictions in the test

set.
Clinician validation of machine learning model

To assess the ML model’s potential as an assistive tool, we

compared the predictive performance of anaesthesiologists

with and without exposure to model predictions. We devel-

oped a web-based visualisation tool to display preoperative

and intraoperative information with content and format

similar to actual anaesthesia records. This tool was used to

‘play back’ procedure data with and without assistance from

ML model predictions (Fig. 1a and b). The tool had the capa-

bility to present the model’s PACU hypotension risk score and

associated clinical features for each anaesthesia record.

University of Washington anaesthesiologists with more

than 2 yr of consultant-level experience were recruited (four

from one hospital and five from the second hospital) to review

a set of randomly selected electronic anaesthesia records.

None of the study investigators participated in the validation

component of this study. After enrolment and consent, we

presented participants with the study purpose, how themodel

was developed, and with anaesthesia cases. Participants were

informed that the incidence of hypotension in the cohort used

to train the model was 12%.

Anaesthesia case records were randomly selected from the

test data set sampled at a ratio of 1:2 hypotensive to non-

hypotensive cases to ensure sufficient exposure to positive

cases. These cases were selected at random, with distribution

matching across age, gender, ASA, length of surgery, and fa-

cility, to ensure a representative cohort.We asked clinicians to

estimate the probability of PACU hypotension at the end of

surgery based on preoperative and intraoperative course in

10% increments between 1% and 100% (Fig. 1a and b). For each

procedure, they first made a prediction without the model risk

score. They were then presented with the model risk score,

along with the top five contributory features, and made an

updated prediction. No other clinical information was

provided.
Statistical analysis

We estimated the model’s impact on anaesthesiologist per-

formance using the ObuchowskieRockette28 method to

compare AUROC under a factorial design. This method is used

to analyse multi-reader multi-case (MRMC) studies29

(Supplementary section 6 details ‘Statistical details of OR

method for clinical validation’). For all other comparisons, we

estimated the significance of differences in AUROC perfor-

mance using the DeLong and colleagues30 test of AUROC.
Sample size calculation

The validation study design was agreed upon before the

study’s initiation. The primary outcome was ‘non-equiva-

lence’ of the two modalities: clinician AUROC when presented

with the model and without it. A sample size for detecting an

effect size of 0.05 (P-value¼0.05) with 80% power was esti-

mated as at least 125 cases for nine readers using the MRMC

model and the software Multi-Reader Sample Size Program
for Diagnostic Studies31; estimates of intra- and inter-rater

variance were not known and estimated in Supplementary

section 6.
Clinician acceptance of the model

After completing prediction tasks, each anaesthesiologist

completed a four-question electronic questionnaire address-

ing validity, potential for clinical action, and potential for

model adoption, which were consistent with the study aims:

(i) how useful the PACU hypotension risk score would be for

decision-making and communication concerning post-

operative care, (ii) what actions prediction would enable, (iii)

reasons why the model risk score might not be useful, and (iv)

suggestions that wouldmake itmore likely for them to adopt it

in their practise. We then interviewed four participants to

elaborate on responses. These interviews were recorded and

transcribed. The comments and transcripts were analysed by

two investigators (PG and KOH) using an inductive grounded

theoretical approach, in which excerpts are coded and clus-

tered into an emerging set of themes.32
Results

Patient characteristics and primary outcome

The initial data set consisted of 144 468 procedures. After

filtering and excluding 3183 procedures for data quality, 3478

for non-applicable procedure types, and 32 932 for recovery in

non-PACU areas, the final data set included 104 875 cases. The

most recent 17 029 (16%) procedures according to year were

held out as a test set, with the remaining 87 846 (84%) used for

model development (training and validation sets; Table 1).

PACU hypotension was documented in 12% of cases, with a

mean andmedian duration of 38 and 20min, respectively. The

median sampling frequency for BPmeasurements in the PACU

was every 15 min, and 5% of patients had invasive BP moni-

toring postoperatively.
Model performance

The model achieved an AUROC of 0.82 (95% CI: 0.812e0.832)

and AUPRC of 0.4 (95% CI: 0.38e0.42) with an average precision

of 0.40 (95% CI: 0.377e0.420) in the held-out test set. Receiver

operating characteristic and precisionerecall curves are

shown in Figure 2a. We illustrate screening implications of

clinical triggers at different operating points along these

curves in Table 2, based on a daily average of 44 cases going to

PACU with six patients developing hypotension. At an oper-

ating point of 33% precision and 61.6% recall, 11 positive pre-

dictions would need be made to detect four true cases, whilst

the remaining two would be missed. Predictions were well

calibrated across the range of clinical risk, achieving a Brier

score of 0.093, as seen in Figure 2b. (An improved Brier score of

0.083 was achieved with post hoc calibration using isotonic

regression.) There was no significant difference in model

performance based on age, ASA score, comorbidities, emer-

gency status, length of surgery, race, or severity of post-

operative hypotension (computed as the time-weighted

average depth below 65 mm Hg).
Feature importance

The 25 most important features contributing to model pre-

diction are reported in Figure 3. Amongst static features,
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Fig 2. Gradient boosting model performance: (a) AUROC 0.82 (95% CI: 0.812e0.832), area under precisionerecall 0.4 (95% CI: 0.38e0.42). (b)

Calibration diagram after isotonic regression (diagonal line indicates perfect calibration). To produce this curve, the model’s predictions

are grouped into 10 buckets and compared with the fraction of positive labels in that bucket. The dark line plots are the mean of 1000

bootstrap samples. The 95% CI was determined from the 2.5th and 97.5th percentiles of the bootstrap sample statistics. (c) ROC curves of

model alone, clinicians alone, and clinicians provided with model predictions, in the validation study cohort. The AUROC for ‘clinicians’

and ‘cliniciansþmodel’ are computed by averaging the true positive rate of the nine clinicians over the false-positive rate points. The

shaded area indicates1 SD. AUC, area under the curve; AUROC, area under the receiver operating characteristic; CI, confidence interval;

ROC, receiver operating characteristic; SD, standard deviation.

PACU hypotension prediction model - 629
procedure type, sex, patterns of intraoperative medication

administration, age, severity intraoperative hypotension, ASA

physical status classification, and estimated blood loss

significantly affected the prediction risk score. Amongst time-
varying features, average volatile anaesthetic dose and phased

intraoperative BP vectors were ranked highest. Across all three

procedural phases, diastolic BP measurements were most

predictive of PACU hypotension.



Table 2Operating points for three different precisionerecall and sensitivityespecificity pairs are shown on the curves and in the table.

Operating
point

Precision True positive:
false positive

Sensitivity/recall Specificity Daily number
of positive
prediction

Daily false
negatives

Daily true
positives

A 50 1:1 32.3% [27.3e37.4] 96% [94.9e96.0] 3.9 4.1 1.9
B 33 1:2 61.6% [57.6e66.7] 83.8% [82.8e84.8] 11.2 2.3 3.7
C 25 1:3 78.8% [74.7e81.8] 68.7% [66.7e71.7] 18.9 1.3 4.7
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Clinician validation of the ML model

Using the case playback tool, nine anaesthesiologists reviewed

the same 192 cases each. ROCs for clinician prediction with

and without support from the model are shown in Figure 2c.

The positive impact of exposure to the model’s predictions on

clinician performance was significant (P¼0.0033; Obuchow-

skieRockette28 test) with an average AUROC effect size of 0.067

(95% CI: 0.03e0.11), indicating better performance of clinician

predictions with model support (AUROC 0.74; 95% CI:

0.68e0.79) vs without (AUROC 0.67; 95% CI: 0.60e0.73). Overall,

performance of the model alone (AUROC 0.82; 95% CI:

0.76e0.88) was better than clinician performance both with

(P¼0.014; test of DeLong and colleagues30) and without

(P<0.0001; test of DeLong and colleagues30) exposure to infor-

mation from the model. The impact of the model on average

estimated risk and the breakdown by individual clinician are

further explored in Supplementary Figures 2 and 3. The addi-

tional difference after seeing the ML model was small (þ2.5%

to the risk estimate). Some participants made large adjust-

ments, but most were small. Two participants made opposite

sign adjustments on average. Further analyses are available in

the Supplementary information.
Clinician acceptance of machine learning model

Qualitative feedback from questionnaires and interviews

revealed five key themes detailed in Table 3. The key themes

were (i) opportunity for prospective care planning and reflec-

tion on intraoperative care; (ii) hypotension risk prediction

was of perceived value for PACU staff and handover discus-

sions; (iii) clinician trust in model accuracy depends on

alignment with clinician intuitions, and the model has greater

value when themodel risk score is unexpected; (iv) top-ranked

feature list insufficient for clinicians to understand discrep-

ancies with the model; and (v) use of a single threshold for

defining hypotension may be overly simplistic.

Clinician feedback addressed the possible utility and sit-

uation of the model, highlighting the potential for informing

decisions about PACU care alongside facilitating reflective

awareness about intraoperative care decisions. Anaesthesi-

ologists indicated that the hypotension risk score could in-

fluence handover communications with PACU nurses,

potentially leading to increased monitoring frequency, crea-

tion of proactive orders for postoperative fluid administra-

tion, and establishment of early triggers for escalation of

care.
Discussion

The novelty of this work lies in information learned about

clinician perception and acceptance of a contextually relevant
and clinically informed perioperative ML model. In this mixed

methods study, an ML model for PACU hypotension utilising

routinely collected electronic medical record data demon-

strated predictive performance exceeding that of experienced

anaesthesiologists when those anaesthesiologists were

viewing a low-fidelity patient simulation on a web application.

Exposure to information from model predictions (risk scores

and ranking of contributing features) improved anaesthesiol-

ogist predictions of PACU hypotension. Clinicians expressed

value and trust in MLmodel technology and themes important

for successful clinical implementation. Compared with prior

work on continuous prediction of impending intraoperative

hypoxaemia,20 we observed similar improvements in anaes-

thesiologist performance on this distinct clinical prediction

task, but note that clinicians expressed the desire for more

information about individual features underlying ML pre-

dictions of PACU hypotension, especially when these esti-

mates diverged from their expectations. The presentation of

such individual explanatory variables may be of particular

importance in ML systems positioned at points of periopera-

tive transitions of care, as this contextual information is

essential to handoff communication surrounding anticipated

future events, whichmust bemanaged by a receiving provider.

Our study suggests that use of clinically informed, automated

predictive systems may be well received by anaesthesiologists

and used in clinical environments to facilitate improved

detection, prevention, and management of PACU care. These

results provide a use case for modifying current approaches to

PACU hypotension and could be used to motivate and inform

clinical trials.

Prior work has demonstrated the ability of ML to predict

acute hypotension for patients receiving haemodialysis,33 af-

ter the induction of anaesthesia,13 during the intraoperative

period,14 and for critically ill patients.24,26,34,35 ML-derived

predictions of intraoperative hypotension based on arterial

pressure waveform data provide strong near-term perfor-

mance,15 leading to reduction in hypotensive events.14 Our

study provides new information on how end-of-surgery pre-

dictions of postoperative hypotensionmay enhance the ability

of anaesthesiologists to anticipate changes in patient status

during recovery in the PACU. We purposely made the predic-

tion at the end of surgery to account for the dynamic nature of

the intraoperative period and to produce timely information at

the point of operating theatre to PACU transitions of care. The

focus on PACU hypotension is important because of the large

volume of post-surgical patients who receive care in a PACU

where they remain at risk of hypotension. Additionally, hy-

potension monitoring intensity is reduced in the PACU after

surgery. Finally, organ dysfunction and mortality attributable

to hypotension may occur in the postoperative period, which

includes the PACU, amongst low-to moderate-risk surgical

populations.2,17,19,36



Procedure type

Sex

Vasopressor i.v. lntraOplnfusion

Minimum NIBPD phase 1

Minimum NIBPD phase 0

Narcotic i.v. lntraOplnfusion

Age

Median NIBPD phase 0

Mean NIBPM phase 2

Median NIBPD phase 2

Trend NIBPD phase 0

Depth of intraoperative HT

Mean NIBPD phase 0

Anti-emetic IV lntraOpMedBolus

Mean NIBPD phase 2

Mean ETSEVO phase 1

Minimum NIBPM phase 1

Mean NIBPM phase 0

ASA

Variance NIBPS phase 0

Blood loss total

Maximum NIBPS phase 0

Minimum NIBPD phase 2

Trend NIBPM phase 1

Trend NIBPM phase 0

–0.75 –0.50 –0.25 0.00 0.25 0.50
Low

High

SHAP value (impact on model output)

Feature value

Fig 3. Top 25 important features for the test set of 17 029 cases: the y-axis indicates the features in order of importance from top to bottom.

On the x-axis, the SHAP value indicates the change in log-odds. Gradient colour indicates the original value for that variable, and each

point represents a sample from the test set. Procedure type is categorical, so colour gradation is not meaningful here. ASA, ASA physical

status classification system; ETSEVO, end-expired sevoflurane concentration; HT, hypotension; NIBPD, noninvasive diastolic BP; NIBPM,

noninvasive mean BP; NIBPS, noninvasive systolic BP; SHAP, Shapley Additive Explanations. For sex, blue/red indicates men/women,

respectively. For medications (opioid i.v. and anti-emetic i.v.) represented as counts in the model blue/red indicates fewer/higher fre-

quency (times) of administration throughout the anaesthesia.

PACU hypotension prediction model - 631



Table 3 Thematic analysis of the feedback on the tool. Key themes revealed by analysing qualitative feedback from anaesthesiologist
questionnaires and interviews.

Theme 1: hypotension prediction as a component of holistic postoperative risk assessment: opportunity for prospective
care planning and reflection on intraoperative care

A ‘Perhaps if the model predicts a high risk of PACU hypotension, that suggests I should have managed the anaesthetic
differently for this patient, and the model could help me recognise that’.

B ‘Potential uses of this risk model: (i) education of perioperative providers and improved awareness; (ii) potential strategies to
prevent PACU hypotension, which may reduce PACU time and discharge to floor; and (iii) prevention of PACU hypotension
with potential to prevent adverse events related to effects of hypotension on end-organ function’.

C ‘It would typically take a lot more to be done before we could switch them to an ICU disposition, so the hypotension predictor
alone would not move the dial to start talking about getting an ICU bed. It would have to be hypotension plus something else’.

Theme 2: hypotension risk prediction was of perceived value for PACU staff and handover discussion
A ‘I would communicate that this patient is at increased risk and ask them to have a heightened awareness of that possibility

and communicate with me if they are starting to see some degree of hypotension. It is reasonable to consider making sure
that there is a fluid bolus option in the postoperative orders assuming that is a reasonable first step to treating hypotension.
Asking the nurse to keep a closer eye and let me know if it trends downward’.

B ‘Of course, the resource allocation in the PACU can be challenging. If the nurses knew [the risk], then they would need 1e1,
dedicated, frequent monitoring of vital signs and assessment. Sometimes, we do that but not with any risk profile in mind.
The score can help take it to the next step and define them better (e.g. check complete blood count, etc. Would help us be
more proactive; minimise the AUC for blood pressure’.

C ‘If everyone had similar levels of confidence in the model, that would have some value. Some PACU if they have been told that
they have been assigned this patient coming out of operating theatre and if they have had time, they will have read over the
chart and may have already brought a higher level of preparation to what they are doing. Like everywhere else, there are
variations in ability and practice amongst PACU nurses so it might be most helpful for less experienced PACU nurses or
nurses that did not have time to read the whole chart and think “oh yeah, when I see these patients, then I typically have to
do this” or “I am expecting a longer PACU stay”.

Theme 3: model has greater value when model risk score is unexpected
A ‘It could help with identifying cases that might have an unrecognised high risk for PACU hypotension that I did not identify as

being high risk’.
Theme 4: top-ranked feature list insufficient for clinicians to understand discrepancy with model
A ‘It made medwhen I was interpreting the indicators suggested a certain amount of weightdI would look at those and it still

did not get me closer to confidence one way or the other, so I was not sure whether to throw out my estimate entirely or just
trust the model. I suppose if I had enough info about how the model was generated and how deep the data were that were
on itdso it kind of just left me just wondering when it was different from my prediction or experience wasdwho
was wrongdI was not convinced I was entirely wrong and I was not convinced the model was entirely right’.

B ‘Would need to see the data and peer review’

Theme 5: use of standard threshold labels may be overly simplistic
A ‘Whilst the risk score is at times helpful, it seems to overpredict minor hypotension in teens and younger women who have

normal BP for these age groups, so no treatment would be necessary’.
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We uniquely developed a model that uses data from mul-

tiple phases of preoperative and intraoperative care to facili-

tate safer postoperative care transition. A key contribution of

the study is in the examination of clinician acceptance and

clinician validation of the model. This study indicates that

anaesthesiologist performance in a clinically important pre-

diction task could be improved by incorporating ML models

during surgery. Despite our finding that the model alone out-

performed clinician prediction both with and without the

addition of ML prediction, we cannot conclude that MLmodels

should replace clinician predictions. Clinical practice extends

beyond simple predictions, and ML models have limitations.

Clinician performance may have been worse than clinical

practice because of lack of additional inputs (e.g. physical ex-

amination). Clinicians may outperform ML models if suffi-

ciently trained to make predictions using ML models or if

clinician variability in expertise and experience is decreased.

Our finding that clinician performance can be augmented in

the perioperative environment by exposure to model risk

score is not only novel but offers a new tool for prevention of

PACU hypotension by optimising end-of-surgery care and

preparing PACU staff for patients at risk of deterioration.

Specifically, implementing algorithmically informed decisions
based on technology could guide anticipatory strategies, such

as protocols for more frequent postoperative vital sign moni-

toring in select patients, proactive continuation of intra-

operative fluids or vasopressors in PACU, optimising PACU

nursing assignments for probable patient needs, and

enhanced handover discussions between operating theatre

and PACU teams, including establishment of treatment plans

for hypotension and triggers for care escalation.

Integration of ML models into clinical decision support

aids, either as part of an electronicmedical record system or as

an add-on technology, requires careful design considerations,

expensive programming, and time-consuming development

work. As an intermediate approach, we developed a web-

based case playback tool to perform a cost-effective clinician

validation of ML models. The study allowed us to assess

clinician validation ofMLmodels and provided initial feedback

on usability that may motivate a clinical trial.

Qualitative interviews with experts highlight the

complexity of human interactions with automated modelling

approaches. Anaesthesiologists commented on the relatively

simplistic prediction factors we used and expressed they and

health systems would be unlikely to willingly cede ultimate

patient care and decision-making authority to an algorithm.
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Social determinants and unrecorded coexisting conditions,

clinician biases, or technology flaws may all affect PACU hy-

potension predictions but would not be captured by the elec-

tronic health record, thereby affecting model performance.

Importantly, thematic content analysis in this study revealed

clinician acknowledgement of the value of using ML models

to optimise postoperative outcomes, including PACU

hypotension.

Our co-development and clinically informed approach to

interpretable ML model development provides insight into

clinical features associated with individual risk. The value of

identifying the underlying causes of hypotension, in addition

to prediction of overall risk, has recently been highlighted as

an essential element of future ML models for perioperative

hypotension that is needed to realise the clinical benefits of

these technologies.37 Although the factors we identified were

consistent with clinical expectation, an unexpected finding

was the strong influence of female sex associated with an

increased likelihood of PACU hypotension. Sex differences in

BP over the lifespan studied in the context of hypertension

suggest that BP thresholds for hypertension-associated risk

differ by sex and that lower treatment targets may be war-

ranted for women.38,39 Our study design did not allow us to

determine the interaction of BP with sex on postoperative

outcomes, but it demonstrates a need for future research on

the interactions between sex, hypotension, and postoperative

outcomes.

Our study has strengths and limitations. Strengths are the

use of mixed methods to examine feasibility of end-of-

surgery PACU hypotension prediction, examination of clini-

cian acceptance of ML model implementation, use of large

data set and electronic health record data, inclusion of

diverse procedure types, use of state-of-the-art ML methods

with and complementary approaches to understanding

model performance, inclusion of a clinically diverse patient

population, and use of the most recent subset of cases for

internal validation. We used expert input and clinically and

contextually relevant anaesthesia care phases to make the

prediction. Although we use standard ML methods, the co-

development approach used to create the model is novel.

Limitations are use of single health system data, continued

need for external validation and model comparison, tempo-

ral bias from our retrospective study design, the lack of pro-

spective clinical evaluation, and use of a single absolute

threshold for labelling hypotensive events. The use of an

absolute threshold meant the model cannot predict severity

of hypotension. The study tested clinicians using a web

application in an unfamiliar environment without full access

to data (such as text notes and visual and physical assess-

ment of the patient), which likely resulted in an underesti-

mate of their real-world performance on this task.

Participants were informed of the 12% incidence of hypo-

tension in the training data, whereas the prevalence in the

study was chosen to be 33% to ensure sufficient numbers of

positive cases. Presentation of these datamight have affected

their judgement, but learning effects were neither observed

in the test cases or from the post-study feedback gathered

from them. The experimental design for physicians making

updated predictions may be biased compared with real-life

behaviour, and that forcing an explicit estimate will anchor

the participant to that original estimate. Despite limitations,

this study provides new information to better understand

clinician acceptance of a real-time ML model to advance

clinical anaesthesia practice.
In conclusion, we developed and evaluated a clinically

informed real-time end-of-surgery ML model that clinicians

acknowledged may help them predict and prevent PACU

hypotension. The risk score and list of contributing individ-

ual factors generated by the model enhanced clinician pre-

dictions, demonstrating the need for future model testing

and potential value of this approach for handovers and pro-

active planning of PACU care. Clinician feedback suggests

that ML models may be extended to encompass a holistic

assessment of perioperative risk spanning different points in

the perioperative journey. Optimising interactions between

ML models and clinician decision makers will be key to suc-

cessfully integrating model predictions into perioperative

environments.
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